Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/187063
Título: Exploiting Artificial Intelligence to enhance average individual investment performance: a comparative analysis of combined models
Autor: Laurenti, Paolo
Orientador: Rodrigues, Paulo Manuel Marques
Palavras-chave: Trading
AI
Sentiment analysis
Genetic programming
Machine Learning Models
Data de Defesa: 20-Jan-2025
Resumo: This research explores the enrichment of individual investment performance through artificial intelligence. It focuses on trading strategies for financial instruements, leveraging sentiment analysis, genetic programming, and various machine learning models. A literature review provides context for the strategies employed. The study tests sentiment-based trading as a standalone approach and combines it with alpha generation via genetic programming. Additionally, models such as “LSTM Neural Networks”, “Random Forests”, and “XGBoost” are evaluated to assess their effectiveness. Comparative analysis are performed to identify optimal strategies for maximizing returns, improving investment decisions, and mitigating risks for individual investors.
URI: http://hdl.handle.net/10362/187063
Designação: A Work Project, presented as part of the requirements for the Award of a Master’s degree in Finance from the Nova School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Nova_Thesis_PL_1_.pdf514,37 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.