Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/186115| Título: | Modern art meets machine learning: advancing price predictions with visual features |
| Autor: | Màrquez, Niklas Zeng |
| Orientador: | Freitas, Miguel Lebre de Nunes, Luís Catela |
| Palavras-chave: | Alternative finance Art valuation Modern art Machine learning Forecasting Regression Convolutional neural network |
| Data de Defesa: | 24-Jan-2025 |
| Resumo: | This thesis explores machine learning's (ML) potential in art price prediction by integrating traditional artwork features with visual data from high-quality images. Using a dataset of modernist artworks auctioned by Christie’s (2007-2024), the study employs hedonic regression, advanced ML, and Convolutional Neural Networks. Results show ML models outperform traditional methods, revealing biases in auction house estimates. Visual features are relevant predictors of price and improve predictions modestly. Auction house valuation biases when combined with ML modes can be interpreted and subsequently mitigated. These findings highlight the promise of data-driven, scalable art valuation frameworks, advancing both academic research and industry practice. |
| URI: | http://hdl.handle.net/10362/186115 |
| Designação: | A Work Project, presented as part of the requirements for the Award of a Master’s degree in Finance from the Nova School of Business and Economics |
| Aparece nas colecções: | NSBE: Nova SBE - MA Dissertations |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| FALL25_60491_Niklas_M_rquez.pdf | 1,89 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











