Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/186115
Título: Modern art meets machine learning: advancing price predictions with visual features
Autor: Màrquez, Niklas Zeng
Orientador: Freitas, Miguel Lebre de
Nunes, Luís Catela
Palavras-chave: Alternative finance
Art valuation
Modern art
Machine learning
Forecasting
Regression
Convolutional neural network
Data de Defesa: 24-Jan-2025
Resumo: This thesis explores machine learning's (ML) potential in art price prediction by integrating traditional artwork features with visual data from high-quality images. Using a dataset of modernist artworks auctioned by Christie’s (2007-2024), the study employs hedonic regression, advanced ML, and Convolutional Neural Networks. Results show ML models outperform traditional methods, revealing biases in auction house estimates. Visual features are relevant predictors of price and improve predictions modestly. Auction house valuation biases when combined with ML modes can be interpreted and subsequently mitigated. These findings highlight the promise of data-driven, scalable art valuation frameworks, advancing both academic research and industry practice.
URI: http://hdl.handle.net/10362/186115
Designação: A Work Project, presented as part of the requirements for the Award of a Master’s degree in Finance from the Nova School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
FALL25_60491_Niklas_M_rquez.pdf1,89 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.