Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/172347
Título: Privacy-preserving data analysis with differential privacy
Autor: Sørensen, Frederikke Bruhn
Orientador: Preguiça, Nuno Manuel Ribeiro
Palavras-chave: Cryptography
Statistical data
Epsilon
Differential privacy
Data de Defesa: 23-Jan-2023
Resumo: There is a growing demand for statistical data analysis as it is being adopted by many businesses for a variety of purposes. For that reason, there has been a lot of attention recently focused on the concept of differential privacy as a standard model for ensuring privacy when personal information is used and sold for secondary purposes. In this work, we explore the available privacy-preserving mechanisms and test one of the more mature techniques in an experiment. In the end, we present the findings and conclude on the practicality and accuracy of the technique.
URI: http://hdl.handle.net/10362/172347
Designação: A Work Project, presented as part of the requirements for the Award of a Master’s degree in Business Analytics, from the Nova School of Business and Economics.
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2022_23_Fall_49721_Frederikke_S_rensen.pdf2,78 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.