Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/47032
Título: | A Parallel Multiobjective Metaheuristic for Multiple Sequence Alignment |
Autor: | Rubio-Largo, Álvaro Castelli, Mauro Vanneschi, Leonardo Vega-Rodríguez, Miguel A. |
Palavras-chave: | Memetic computing Metaheuristic Multiobjective optimization Multiple sequence alignment Modelling and Simulation Molecular Biology Genetics Computational Mathematics Computational Theory and Mathematics SDG 3 - Good Health and Well-being |
Data: | 1-Set-2018 |
Resumo: | The alignment among three or more nucleotides/amino acids sequences at the same time is known as multiple sequence alignment (MSA), a nondeterministic polynomial time (NP)-hard optimization problem. The time complexity of finding an optimal alignment raises exponentially when the number of sequences to align increases. In this work, we deal with a multiobjective version of the MSA problem wherein the goal is to simultaneously optimize the accuracy and conservation of the alignment. A parallel version of the hybrid multiobjective memetic metaheuristics for MSA is proposed. To evaluate the parallel performance of our proposal, we have selected a pull of data sets with different number of sequences (up to 1000 sequences) and study its parallel performance against other well-known parallel metaheuristics published in the literature, such as MSAProbs, tree-based consistency objective function for alignment evaluation (T-Coffee), Clustal Ω, and multiple alignment using fast Fourier transform (MAFFT). The comparative study reveals that our parallel aligner obtains better results than MSAProbs, T-Coffee, Clustal Ω, and MAFFT. In addition, the parallel version is around 25 times faster than the sequential version with 32 cores, obtaining an efficiency around 80%. |
Descrição: | Rubio-Largo, Á., Castelli, M., Vanneschi, L., & Vega-Rodríguez, M. A. (2018). A Parallel Multiobjective Metaheuristic for Multiple Sequence Alignment. Journal of Computational Biology, 25(9), 1009-1022. DOI: 10.1089/cmb.2018.0031 |
Peer review: | yes |
URI: | http://www.scopus.com/inward/record.url?scp=85053186520&partnerID=8YFLogxK http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000443955000005 |
DOI: | https://doi.org/10.1101/103101 |
ISSN: | 1066-5277 |
Aparece nas colecções: | NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals) |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Rubio_Largo_LVanneschi_MCastelli_MAVegaRodriguez_Parallel_pre_print.pdf | 1,81 MB | Adobe PDF | Ver/Abrir | |
Parallel_Multiobjective_Metaheuristic_Multiple_Sequence.pdf | 2,69 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.