Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/47032
Registo completo
Campo DCValorIdioma
dc.contributor.authorRubio-Largo, Álvaro-
dc.contributor.authorCastelli, Mauro-
dc.contributor.authorVanneschi, Leonardo-
dc.contributor.authorVega-Rodríguez, Miguel A.-
dc.date.accessioned2018-09-20T22:20:25Z-
dc.date.available2018-09-20T22:20:25Z-
dc.date.issued2018-09-01-
dc.identifier.issn1066-5277-
dc.identifier.otherPURE: 5868267-
dc.identifier.otherPURE UUID: 7178b540-f568-4956-be64-5d999db988f0-
dc.identifier.otherScopus: 85053186520-
dc.identifier.otherWOS: 000443955000005-
dc.identifier.otherORCID: /0000-0002-8793-1451/work/72856159-
dc.identifier.otherORCID: /0000-0003-4732-3328/work/151426705-
dc.identifier.urihttp://www.scopus.com/inward/record.url?scp=85053186520&partnerID=8YFLogxK-
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000443955000005-
dc.descriptionRubio-Largo, Á., Castelli, M., Vanneschi, L., & Vega-Rodríguez, M. A. (2018). A Parallel Multiobjective Metaheuristic for Multiple Sequence Alignment. Journal of Computational Biology, 25(9), 1009-1022. DOI: 10.1089/cmb.2018.0031-
dc.description.abstractThe alignment among three or more nucleotides/amino acids sequences at the same time is known as multiple sequence alignment (MSA), a nondeterministic polynomial time (NP)-hard optimization problem. The time complexity of finding an optimal alignment raises exponentially when the number of sequences to align increases. In this work, we deal with a multiobjective version of the MSA problem wherein the goal is to simultaneously optimize the accuracy and conservation of the alignment. A parallel version of the hybrid multiobjective memetic metaheuristics for MSA is proposed. To evaluate the parallel performance of our proposal, we have selected a pull of data sets with different number of sequences (up to 1000 sequences) and study its parallel performance against other well-known parallel metaheuristics published in the literature, such as MSAProbs, tree-based consistency objective function for alignment evaluation (T-Coffee), Clustal Ω, and multiple alignment using fast Fourier transform (MAFFT). The comparative study reveals that our parallel aligner obtains better results than MSAProbs, T-Coffee, Clustal Ω, and MAFFT. In addition, the parallel version is around 25 times faster than the sequential version with 32 cores, obtaining an efficiency around 80%.en
dc.format.extent14-
dc.language.isoeng-
dc.rightsopenAccess-
dc.subjectMemetic computing-
dc.subjectMetaheuristic-
dc.subjectMultiobjective optimization-
dc.subjectMultiple sequence alignment-
dc.subjectModelling and Simulation-
dc.subjectMolecular Biology-
dc.subjectGenetics-
dc.subjectComputational Mathematics-
dc.subjectComputational Theory and Mathematics-
dc.subjectSDG 3 - Good Health and Well-being-
dc.titleA Parallel Multiobjective Metaheuristic for Multiple Sequence Alignment-
dc.typearticle-
degois.publication.firstPage1009-
degois.publication.issue9-
degois.publication.lastPage1022-
degois.publication.titleJournal of Computational Biology-
degois.publication.volume25-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.1101/103101-
dc.description.versionpreprint-
dc.description.versionauthorsversion-
dc.description.versionpublished-
dc.contributor.institutionNOVA Information Management School (NOVA IMS)-
dc.contributor.institutionInformation Management Research Center (MagIC) - NOVA Information Management School-
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)



FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.