Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/129893
Título: A novel binary classification approach based on geometric semantic genetic programming
Autor: Bakurov, Illya
Castelli, Mauro
Fontanella, F.
Scotto Di Freca, A.
Vanneschi, Leonardo
Palavras-chave: Binary classification
Geometric semantic genetic programming
Computer Science(all)
Mathematics(all)
Data: 1-Mar-2022
Resumo: Geometric semantic genetic programming (GSGP) is a recent variant of genetic programming. GSGP allows the landscape of any supervised regression problem to be transformed into a unimodal error surface, thus it has been applied only to this kind of problem. In a previous paper, we presented a novel variant of GSGP for binary classification problems that, taking inspiration from perceptron neural networks, uses a logistic-based activation function to constrain the output value of a GSGP tree in the interval [0,1]. This simple approach allowed us to use the standard RMSE function to evaluate the train classification error on binary classification problems and, consequently, to preserve the intrinsic properties of the geometric semantic operators. The results encouraged us to investigate this approach further. To this aim, in this paper, we present the results from 18 test problems, which we compared with those achieved by eleven well-known and widely classification schemes. We also studied how the parameter settings affect the classification performance and the use of the -score function to deal with imbalanced data. The results confirmed the effectiveness of the proposed approach.
Descrição: Bakurov, I., Castelli, M., Fontanella, F., Scotto Di Freca, A., & Vanneschi, L. (2022). A novel binary classification approach based on geometric semantic genetic programming. Swarm and Evolutionary Computation, 69(March), 1-12. [101028]. https://doi.org/10.1016/j.swevo.2021.101028 ------Funding Information: This work was supported by national funds through the FCT (Fundação para a Ciência e a Tecnologia) by the projects GADgET (DSAIPA/DS/0022/2018), BINDER (PTDC/CCIINF/29168/2017), and AICE (DSAIPA/DS/0113/2019). Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410).
Peer review: yes
URI: http://hdl.handle.net/10362/129893
DOI: https://doi.org/10.1016/j.swevo.2021.101028
ISSN: 2210-6502
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
A_novel_binary_classication_approach_based_on.pdf1,26 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.