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Abstract

Geometric semantic genetic programming (GSGP) is a recent variant of ge-

netic programming. GSGP allows the landscape of any supervised regression

problem to be transformed into a unimodal error surface, thus it has been ap-

plied only to this kind of problem. In a previous paper, we presented a novel

variant of GSGP for binary classification problems that, taking inspiration

from perceptron neural networks, uses a logistic-based activation function to

constrain the output value of a GSGP tree in the interval [0, 1]. This sim-

ple approach allowed us to use the standard RMSE function to evaluate the

train classification error on binary classification problems and, consequently,

to preserve the intrinsic properties of the geometric semantic operators. The

results encouraged us to investigate this approach further. To this aim, in

this paper, we present the results from 18 test problems, which we compared
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with those achieved by eleven well-known and widely classification schemes.

We also studied how the parameter settings affect the classification perfor-

mance and the use of the F-score function to deal with imbalanced data. The

results confirmed the effectiveness of the proposed approach.

Keywords: Binary classification, Geometric Semantic Genetic

Programming

1. Introduction

Improving the effectiveness of genetic programming (GP) [1] for tackling

classification tasks has been a steady research trend, at least in the last two

decades. A relatively complete survey [2] reports numerous contributions

published before 2010, proposing the use of GP for evolving classification

algorithms, classification rules, and classifier expressions by incorporating

several different techniques to represent solutions and ways of assessing fit-

ness, including single- and multi-objective approaches. The limitations of

the various proposed methods, discussed in [3], paved the way for the further

research that took place actively in the last decade. A recent survey can

be found in [4]. Among the existing approaches, particularly successful were

some attempts of integrating GP with other classifier systems, such as k-

Nearest Neighbors, with and without data discretization [5]; with clustering,

often applied on feature spaces remapped by GP expressions [6, 7], and with

ensemble techniques [8, 9, 10]. All in all, the recently proposed GP methods

all share some sophistication and algorithmic complexity, which testifies to a

certain difficulty of GP in tackling classification tasks, clearly recognized, for

instance, in [6]. This highly contrasts with the recent successes that were ob-
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tained by GP on regression problems [11]. In particular, geometric semantic

genetic programming (GSGP) [12, 13], a recent development of GP, stood

out for numerous successful real-life applications [14]. Despite its many suc-

cessful applications in regression problems, researchers involved with GSGP

still have not found a way to adapt it successfully to classification problems.

In a previous paper, we proposed an extension of GSGP for tackling

binary classification tasks [15]. Contrary to some of the most recently pro-

posed approaches, the idea was extremely simple, which made it much easier

to understand and implement compared to many others. The proposed ap-

proach was inspired by the functioning of the perceptron artificial neural

network [16]: the model output of GSGP (which is a floating-point number,

traditionally used for regression) is given as input to an activation function,

that limits its values in a given interval, making the interpretation of the

output as a class label easier. The solid theory behind perceptron, as well

as its numerous successes in real-world applications, strengthened by recent

developments [17], encouraged us to pursue this promising idea. We tested

the proposed approach on 10 data sets and compared its results with those

achieved by a support vector machine (SVM). The results confirmed the

effectiveness of the GSGP extension.

In this paper, we propose an extension of that work. In particular, we test

our approach on 18 data sets and compare the results with those achieved by

seven classification schemes. We also introduce the use of the F-score function

to measure methods’ performance on problems with imbalanced data.

The work is organized as follows. In Section 3, we briefly introduce GSGP.

In Section 4, we explain how GSGP is extended to tackle binary classification
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tasks; analogously to perceptron, the method introduces a new parameter,

whose effect on classification performance is thoroughly discussed. Section 5

presents our experimental study, first introducing the 18 chosen test problems

(publicly available binary classification data sets, characterized by different

feature space dimensions and degrees of imbalance), then discussing the used

parameter settings, and lastly presenting and discussing the obtained results.

The discussion of the experimental results is subdivided into a part dedicated

to the tuning of the new parameter and a part in which the proposed system

is compared to state-of-the-art machine learning methods, such as Support

Vector Machines, Decision Trees, Artificial Neural Networks, Bayesian Clas-

sifiers, and Logistic Regression. Finally, Section 6 concludes the paper and

proposes ideas for future research.

2. Related work

As already mentioned in the Introduction, many attempts have been

made to solve the limitations of standard GP-based approaches for classi-

fication problems, including the integration with other classification systems

or the use of ensemble techniques.

In [18], Z-Flores et al. proposed a GP-based system for binary classi-

fication. The work combined GP with a local search strategy to improve

the performance of a standard GP classifier. The work of Z-Flores et al.

is inherently different with respect to the one we propose in this paper. In

particular, Z-Flores et al. relied on standard syntax-based genetic operators

for genetic programming, and they did not consider semantic awareness in

the evolutionary process. Moreover, in their method, they weighted each
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node of a GP tree with a real-value parameter, and they employed a non-

linear Gauss-Newton method (the Trust Region algorithm [19]) as a local

search method. On the other hand, the method proposed in this paper ex-

ploits semantic awareness to guide the search process, does not assign any

parameter to the node of the tree, and finally, employs the traditional GP

evolutionary process, with no local search method. For these reasons, the

work of Z-Flores et al., although dealing with binary classification, belongs

to the family of memetic GP, and it is conceptually different with respect to

the approach we are proposing. The only common intuition we shared with

the work of Z-Flores et al. is the use of the sigmoid function for constraining

the output of the GP tree in [0;1]. Nonetheless, also in this case, there is an

important difference: Z-Flores et al. used the sigmoid to provide gradient

information to the local search method. However, in this work, we use the

sigmoid function to obtain continuous values in [0;1] for using the RMSE as

a fitness function. The values can subsequently be transformed into either

0 or 1 by applying a threshold, similarly to what happens in the traditional

classification approach with GP.

Another noteworthy contribution is the one based on the multi-dimensional

multi-class genetic programming (M2GP) approach [20]. The main idea be-

hind M2GP is to exploit the search ability of GP to find a suitable trans-

formation that allows the original data to be grouped into unique clusters,

one for each class. Once the training samples have been transformed accord-

ing to the mapping encoded by an individual, class centroids are computed,

and each sample is labeled with the class of its closest centroid. Then the

percentage of samples correctly classified (i.e., the accuracy) is used as the
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fitness value for that individual. Unfortunately, the search ability of M2GP

is limited by the fact that the dimensionality of the transformed space must

be set a priori because the operators implemented cannot change the num-

ber of dimensions of the transformation encoded by a given individual. To

tackle this drawback, in [6] the authors presented an enhanced version of

the algorithm, named M3GP. They implemented the ability to evolve indi-

viduals with a variable number of dimensions by using operators that can

add or remove the dimensions of the individuals to be modified. In [7] the

authors presented a further enhancement of the M2GP, based on a novel

encoding program that simplifies the construction of multidimensional rep-

resentations. This encoding allowed for achieving better performance thanks

to the implementation of an advanced parent selection technique that led

to more accurate classifiers. Finally, the extension presented in [21] uses a

stack-based program representation, which permits a further simplification

of the construction of multidimensional solutions. This extension also incor-

porates a multiobjective parent selection and survival technique, as well as

an archiving strategy that maintains a set of optimal solutions, taking into

account their complexity and accuracy. Moreover, the selection of the final

model from this archive allowed a reduction of overfitting. The combination

of these techniques allowed this further extension to outperform the previous

MGP versions on a wide set of test problems. More recently, La Cava and

Moore [22] enriched the MGP approach by adding two semantic crossover

operators to choose where useful building blocks are placed during crossover.

The experimental results, from a large set of benchmark regression problems,

confirmed the effectiveness of the proposed operators.
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The main difference between M2GP, M3GP (and the subsequent improve-

ments), and the approach proposed here stands in the fact that the approach

we propose is much simpler. It is, in fact, able to work directly on the orig-

inal feature space, without any remapping required. Furthermore, M2GP,

M3GP, and their descendants force the user to make choices that may not

be straightforward and that generally have an important impact on the sys-

tem’s performance. The first of these choices, and arguably the most crucial

one, concerns the metric to quantify distances in the mapped feature space.

Significant performance differences are reported in the literature according

to the different metrics employed [20, 6]. On the other hand, the algorithm

we propose does not calculate distance, and so this choice can be avoided.

Secondly, even though M3GP and the following improvements relieve the

user from choosing the dimension of the mapped space, which was fixed in

M2GP, an upper bound to this dimension still needs to be chosen, and the

initialization algorithm uses this information. On the other hand, the user of

the proposed approach is completely free from setting this parameter because

no mapping is required. Last but not least, M2GP, M3GP, and successors

have been specifically designed to tackle multi-class classification problems

and spend a significant computational effort to deal with multi-class labels.

However, binary classification is the target of this work. This fact implies

that the MGP-based approaches and our method employ different orders of

magnitude of the computational effort (our approach being much cheaper

from this viewpoint). This makes the two approaches hardly comparable.

For this reason, we do not include any experimental comparison with any of

the MGP-based approaches here.
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GSGP has proven its effectiveness in many real-life applications, which

spans from the prediction of concrete strength [23] to the support of medical

decisions for treating rare diseases [24]. In particular, in [23], the authors use

GSGP to predict a value that measures the strength of high-performance con-

crete, given some parameters representing the materials (cement, water, etc.)

used to prepare the mixture to be evaluated. Whereas, in [24], medical deci-

sions are supported by using GSGP to develop predictive models to forecast

the effect of a specialized therapy; this forecast is performed by predicting

the value of patients’ motor functioning, taking as input six multidimensional

factors, and is integrated in a user-friendly web application. GSGP has also

been used to solve complex problems in the field of pharmacokinetics. In

[25], it was used to address two well-known problems in the field, namely the

prediction of human oral bioavailability and protein-plasma binding levels

of medical drugs. Also in this case, the problems faced required the predic-

tion of a real-valued index. As regards medical applications, GSGP has also

been applied for the prediction of the unified Parkinson’s disease rating scale

(UPDRS) index [26], a score that provides an efficient and flexible way of

measuring and monitoring PD-related disability and impairment. Here the

UPDRS score was predicted using 18 features. More recently, the GSGP has

been enhanced by using local search operators [27, 28]. In [27], the authors

applied the enhanced GSGP approach to two problems in the biomedical

field: computerized tomography (CT) scan and 3D Protein Structure. In

the first problem, given a CT image represented by features describing bone

structures and air inclusions, GSGP was used to predict the target variable

that is the relative location of the image on the axial axis. In the second
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problem, GSGP was used to predict a target variable related to the size of

the residues, taking as input a protein’s tertiary structure data. On the other

hand, in [28] GSGP, has been used to predict the performance of a complex

organizational structure, which can be a regional innovation system. The

proposed approach takes input indicators related to the regional knowledge

base and competitiveness indexes and provides four indicators as output.

3. Geometric semantic genetic programming

Let X = {−→x1,−→x2, ...,−→xn} be the set of input data (training instances,

observations or fitness cases) of a symbolic regression problem, and
−→
t =

[t1, t2, ..., tn] the vector of the respective expected output or target values (in

other words, for each i = 1, 2, ..., n, ti is the expected output corresponding

to input −→xi ). A GP individual (or program) P can be seen as a function that,

for each input vector −→xi returns the scalar value P (−→xi ). Following [12], we

call semantics of P the vector −→sP = [P (−→x1), P (−→x2), ..., P (−→xn)]. This vector can

be represented as a point in an n-dimensional space, which we call semantic

space. Note that the target vector
−→
t is a point in the semantic space.

As explained above, GSGP is a variant of GP, in which the traditional

crossover and mutation are replaced by new operators called geometric se-

mantic operators (GSOs). The objective of GSOs is to define modifications

on the syntax of GP individuals that have a precise and known effect on their

semantics. In particular, as schematically shown in Figure 1, GSOs are as

follows:

• Geometric semantic crossover. This operator generates only one off-

spring, whose semantics stand in line to join the semantics of the two
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(a) (b)

Figure 1: Geometric semantic crossover (plot [a]); respectively geometric semantic muta-

tion (plot [b]) performs a transformation on the syntax of the individual that corresponds

to geometric crossover (respectively geometric mutation) on the semantic space. In this

figure, the unrealistic case of a bidimensional semantic space is considered, for simplicity.

parents in the semantic space.

• Geometric semantic mutation. With this operator, by mutating an

individual i, we obtain another individual j, such that the semantics

of j stands inside a ball of a given predetermined radius, which is

centered in the semantics of i.

One of the reasons why GSOs became so popular in the GP community is

related to the fact that GSOs induce a unimodal error surface (on the training

data) for any supervised learning problem, for which fitness is calculated

using an error measure between outputs and targets. In practice, the use

of GSOs guarantees that the error surface on the training data does not

have a locally optimal solution but rather a single global optimum. This

property holds, for instance, for any regression or classification problem,

independently of how big and how complex data are (see reference [13] for a
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detailed explanation). The definitions of the GSOs follow, as given in [12],

respectively.

Geometric Semantic Crossover (GSC). Given two parent functions

T1, T2 : Rn → R, the geometric semantic crossover returns the real function

TXO = (T1 · TR) + ((1− TR) · T2), where TR is a random real function whose

output values range in the interval [0, 1].

Geometric Semantic Mutation (GSM). Given a parent function

T : Rn → R, the geometric semantic mutation with mutation step ms re-

turns the real function TM = T +ms · (TR1 − TR2), where TR1 and TR2 are

random real functions.

Even though this is not in the original definition of GSM, later contribu-

tions [13] have clearly shown that limiting the codomain of TR1 and TR2 in

a predefined interval (for instance [0, 1], as done for TR in GSC) helps to

improve the generalization ability of GSGP. As in several previous works [13,

29], here we constrain the outputs of TR, TR1 and TR2 by wrapping them in

a logistic function.

Only the definitions of the GSOs for symbolic regression problems are

given here because they are the only ones used in this work. For the def-

inition of GSOs for other domains, the reader is referred to [12]. Figure 1

shows a graphical representation of the mapping between the syntactic and

semantic space given by the GSOs. Using these operators, the semantics

of the offspring is completely defined by the semantics of the parents: the

semantics of an offspring produced by GSC will lie on the segment between

the semantics of both parents (geometric crossover), but GSM defines a mu-

tation such that the semantics of the offspring lies within the ball of radius
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(a) α = 0.1 (b) α = 1.0

Figure 2: Graphical representations of the logistic function (Equation [1]) with two differ-

ent values of the α parameter.

ms that surrounds the semantics of the parent (geometric mutation).

As reported in [12, 13], the GSO’s property of inducing a unimodal error

surface has a price. The price, in this case, is that GSOs always generate

larger offspring than the parents, and this entails a rapid growth of the size

of the individuals in the population. To counteract this problem, in [29] an

implementation of GSOs was proposed that makes GSGP not only usable

in practice but also significantly faster than standard GP. This is possible

through a smart representation of GP individuals, which allows us to not

store their genotypes during the evolution. This is the implementation used

here. Even though this implementation is efficient, it does not solve the

problem of the size of the final model’s size: the genotype of the final solution

returned by GSGP can be reconstructed, but it is so large that it is practically

impossible to understand. This turns GSGP into a “black-box” system, as

many other popular machine learning systems are, including deep neural

networks.
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4. Binary classification with a regression-based GSGP approach

As mentioned in the Introduction, in the work presented here, we use

symbolic regression GSOs to implement a system to solve binary classifica-

tion problems. Our approach is inspired by the functioning of the multi-layer

perceptron (with sigmoidal activation function) neural network [16]. To this

aim, we transformed the two class labels of the classification problem into

the numeric values 0 and 1. This transformation allows binary classification

problems to be considered as regression ones, containing only 0 and 1 as pos-

sible target values. The output produced by a tree encoded by an individual

is given as an input to an activation function. As for the fitness function, we

use the root mean square error (RMSE) between the output of the activation

function and the binary target values, computed over a training set 1.

As customary in perceptrons, we use the logistic activation function:

L(x) =
1

1 + e−αx
(1)

This function has two asymptotes, respectively in 0 and 1. The effect of this

function is twofold. On the one hand it makes it possible to constrain the

final output of the individual in the range [0, 1], limiting the error between

the output of each individual tree and the binary targets (0 or 1). On the

other hand, it should favor a better generalization ability of the proposed

system by increasing the separation between the samples belonging to dif-

ferent classes. In practice, along the evolutionary process, with the aim of

minimizing the error on the training set, our system generates GP individuals

1Note that in the following we will use the term ’RMSE’ and ’error’ interchangeably.

13



that return larger and larger positive (negative) values for samples labelled

as 1(0). At the same time, individuals returning small values for most of

the training samples are discarded, as those small outputs are far from the

binary target values (0 or 1) and increase the error (fitness) more than large

output values. It is worth noting that although the logistic function performs

a transformation of the semantic space, it does not affect or alter the ability

of GS operators to explore such space.

The extent of the data separation can be tuned by modifying the value

of the parameter α of the logistic function (see equation [1]). To have a

visual intuition of this, Figure 2 shows two different logistic functions, one

with α = 0.1 (plot (a)), and the other with α = 1.0 (plot (b)).

Looking at the two plots, we can see that to obtain the same approxi-

mated output value equal to 1 (respectively 0), when α = 0.1 the output

has to be larger (respectively smaller), compared to the case α = 1.0. As

a consequence, given a set of training data for the same value of the error,

samples belonging to different classes are better separated for smaller values

of α. On the other hand, using small values of α has a drawback: given a

prefixed value of the training error ε, finding individuals with an error equal

to ε will be computationally harder for smaller values of α. Thus, finding

a value of α providing a good trade-off between generalization ability and

computational cost is a challenging task and requires a preliminary tuning

phase. The logistic function is used only in the training phase. Indeed, once

a model minimizing the fitness (RMSE) on the training data has been found,

unseen data are classified according to the following simple rule: observa-

tions with positive outputs are predicted as belonging to the same class of
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the training samples labeled as 1, whereas the remaining ones are categorized

in the opposite class.

5. Experimental study

To assess the effectiveness of the proposed approach, we performed two

sets of comparative experiments. In the first set, we investigated the clas-

sification performances of the proposed approach as a function of α, which

determines the steepness of the logistic function applied on the trees’ out-

put (see equation 1 and Figure 2). In the second set, instead, we compared

the results achieved by our GSGP-based binary classification system with

those of eleven well-known and widely used classification schemes, including

four state-of-the-art ensemble methods. The comparison was based on the

classification accuracy and the F-score measure. The latter was particularly

relevant given the fact that some of the data sets exhibit class-imbalance. 2

In the following, we detail how classification accuracy and F-score mea-

sures were computed. Given a GP individual I representing the function

fI : Rn → R, where Rn is the feature space, a given data instance x is la-

beled as belonging to class 1 if fI(x) > 0 and to class 0 otherwise. Based on

these hard-labels, the accuracy and the F-score are computed. Note that, in

practice, the logistic function is only necessary in the training phase, where

the fitness function is given by the RMSE. The results reported in the follow-

2Note that with the term “class-imbalance” refers to those classification problems in

which the classes’ proportion is uneven. To mention the percentage of instances belonging

to the less represented class, we will use the term “degree of imbalance” (the lower it is,

the more imbalanced is a given problem).
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ing were computed by averaging those achieved by the best individual found

at the end of each run. As for the parameters, we performed some prelimi-

nary trials to set them. These parameters were used for all the experiments

described below and are reported in Table 3.

5.1. Test problems

The proposed method was tested on 18 real-world data sets, publicly

available on the UCI [30] and openML [31] repositories. The considered clas-

sification problems present different characteristics in terms of the number

of attributes and instances. Moreover, as we were looking for a supervised

learning procedure, and in particular for a dichotomizer, the data sets have

two target classes. Table 1 reports, for each data set, the number of input

features (variables), the number of instances (observations), and the degree

of imbalance (i.e., the percentage of instances belonging to the less repre-

sented class). To avoid the evolutionary process being biased by the wide

variation of the features’ ranges, data was normalized to zero mean and unit

variance.

To allow a robust statistically-supported comparison of parameters and

classification schemes, 30 independent runs were performed for each of the

considered problem. At each run, the data was randomly shuffled and split

into equally sized training and a test sets. The results reported in the fol-

lowing have been averaged on the errors, and the Accuracy and the F-score

were obtained on the 30 independent test partitions.
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Table 1: Benchmark problems.

Data set #Features #Instances Degree of imbalance

Blood 4 749 0.24

Clima 20 540 0.09

Eeg 14 14980 0.45

Fertility 9 100 0.12

Gina 970 3468 0.49

Hill 100 1212 0.50

Ilpd 10 579 0.28

Kc 21 2109 0.15

Liver 6 345 0.42

Musk 166 476 0.43

Ozone 72 2534 0.06

Pc1 21 1109 0.07

Pc3 37 1563 0.10

Qsar 41 1055 0.34

Retinopathy 19 1151 0.47

Scene 299 2407 0.18

Spam 57 3037 0.39

Spect 22 267 0.21
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5.2. Other classification schemes

To test the effectiveness of our approach, we compared the proposed 

method with eleven classification schemes chosen from literature. Out of 

these, seven regard single classification schemes, from now on referred to as 

base classifiers: decision trees (C4.5 algorithm, DT in the following) [32], 

artificial neural networks (NN) [33], support vector machines (SVM) [34], 

bayesian network (K2 algorithm, BN in the following) [35, 36], naive bayes 

(NB) [37], logistic regression (LG) [38] and the standard genetic program- 

ming [1]. We used the implementation provided by the WEKA tool [39]. We 

chose these classifiers because: (i) they are widely used and standard im- 

plementations are available for each; (ii) they represent different paradigms of 

classification algorithms; and (iii) they represent effective classification 

schemes. The results reported have been achieved after a hyper-parameter 

optimization step. We used a grid search procedure: once a set of values is 

defined for each of the parameter to be tuned, this procedure exhaustively 

tests all parameter combinations. The set of values tested for each of the 

hyper-parameter tuned is shown in Table 2.

We extended our study by comparing the proposed classification method

with four state-of-the-art parallel ensembles, such as Random Forest [40]

(RF), Extremely Randomized Trees [41] (E-RF), Rotation Forest [42] (R-

RF), and Oblique Random Forest [43, 44] (O-RF). In order to make the

forests’ comparison as fair as possible, we defined an assortment of common

parameter, whereas for the number of trees (Nt) and the maximum number of

sampled features at each split (Nf ) we performed the grid-search procedure

mentioned above on the following sets of values:
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• SNt = {50, 100, 200, 500};

• SNf
= {
√
m, log2(Nt)};

where m is the number of input features.

5.3. Study of GSGP’s parameters

As mentioned in Section 4, our approach introduces a new parameter,

called α, which determines the steepness of the logistic function that pro-

cesses individuals’ semantics and shrinks their output to [0, 1] interval. In

practice, this parameter affects how the GP trees separate samples belonging

to different classes, with small α values requiring greater GP trees outputs

to get closer to the asymptotic values (i.e., 0 or 1, representing the class

labels; see Figure 2), and then ensuring, at least in principle, a better class

separation than greater α values. Moreover, we considered the parameter R

that represent the limits of the range of the random constants [−R,+R], thus

affecting the input values given as input to the GP trees. Since tuning the

parameters of a metaheuristic algorithm is a crucial aspect [45], we performed

the experiments detailed below to try to answer the following questions:

i. How much does the setting influence the system performance, especially

alpha, which is a new parameter introduced by our method?

ii. How much do the two parameters influence each other?

iii. Is it possible to suggest default values for these two parameters?

To this aim, we performed a factorial experiment. We considered the follow-

ing sets of values for α and R:

• Sα = {0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0};
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Table 2: Values of the classifier hyper-parameters tested for the base classifiers.

Classifier Parameter values

BN batch size search 

algorithm max. 

n. parents

20, 50, 100, 200 

K2, TabuSearch 

1, 2, 3, 4

NB batch size 20, 50, 100, 200

DT 0.25, 0.50

2, 10, 20

confidence factor

min. n. instances per leaf 

maximum depth
4, 8, 16

LG Optimizer BFGS

Ridge 1e−8

50,100, 200
maximum iterations 
C

1, 10, 100

NN learning rate 

momentum 

hidden Neurons

epochs

0.001, 0.01, 0.1, 0.3

0.2, 0.5, 0.8

10, 100, (#features + #classes)/2 

500, 1000

SVM kernel RBF, sigmoid

C 1, 10, 100

γ 0.01, 0.1, 0.5

GP +, −, ∗, and protected /

input variables, constants under U ∼ (−2, 2)

500

functions set 

terminal set 

population size 

# generations 

initialization

selection 

crossover 

mutation

P (crossover) 

P (mutation) 

elitism

2000

ramped-half-and-half (max. depth=6) 

tournament (pool size=4)

random trees’ swap

random sub-tree replacement

0, 0.3, 0.7, 1

1, 0.5, 0.3, 0

best individual always survives
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Table 3: Parameters’ settings for the proposed GSGP-based classification scheme.

Parameters Values

functions set +,−, ∗, and protected /

terminal set input variables, constants under U ∼ (−2, 2)

population size 500

# generations 2000

initialization ramped-half-and-half, max. depth=6

selection tournament (pool size=4)

crossover random trees’ swap

mutation random sub-tree replacement

P (crossover) 0.0

P (mutation) 1.0

elitism best individual always survives
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• SR = {1, 2, 5, 10, 20, 50}.

For the remaining parameters, we used those shown in Table 3.

To try to answer the first two questions listed above, we plotted the test

error as a function of R for the different α values tested. For the sake of

conciseness, we report the plots for eight of the 16 data sets used. The

plots are shown in Figure 3. From Table 4, it can be noted that, for all

the considered data sets, the lowest α values achieve the worst performance,

especially with the values 0.0001 and 0.001. These results prove that α values

that are too low do not improve the “data separation” effect mentioned in

Section 4. Most probably, this is because these values produce curves that are

too flat (similar to straight lines with a low slope). In practice, these α values

produce similar output values for a large range of input values returned by

the GP individuals, thus reducing the selective pressure of the evolutionary

process.

From the plots, it can be noted that, for a given value of α, the value

of R does not affect the performance significantly. To test whether the per-

formance achieved with the different values of R exhibit differences that are

statistically significant, we performed the one-way ANOVA statistical test.

This test checks the null hypothesis samples from different groups are drawn

from populations with the same mean against the alternative hypothesis the

population means are not all the same. In our experiment, for each value of

α ∈ Sα, we considered as a group of samples the ones obtained by using a

fixed value of R ∈ SR. In practice, for each value of α, we tested whether

the means of the test error achieved with the different R values exhibited

statistically significant differences. The obtained p-values are shown in Ta-
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(a) Clima (b) Fertility

(c) Gina (d) Kc

(e) Ozone (f) Qsar

(g) Retinopathy (h) Spam

Figure 3: Test error as a function of the limits of the range of the random constants

[−R,+R] for the different values of α tested.
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ble 4. From Table 4, it can be noted that, in most cases, different R values

achieve results that are not statistically different. For some data sets, these

differences are statistically significant. However, these differences occurs only

for α = 0.0001 and α = 0.001 which as discussed above, represent the least

performing values and then can be discarded from the set of possible values

for α. Therefore, these results confirm that, for our system, the choice of R

is not critical.

As concerns the third question listed above (i.e., trying to suggest good

default values for α and R), we plotted two histograms, for α and R respec-

tively (see Figure 4). For each α ∈ Sα or R ∈ SR value, the histograms show

the number of data sets on which that value achieved the best result among

all the values tested. From the plots, it can be seen that, as expected, the

values of α ≤ 0.01 never achieved the best performance, whereas the value

1.0 achieved the best performance on nine of the 18 data sets considered in

our experiments. Regarding the other values (0.05 ≤ α ≤ 0.5), they equally

“share” the best performance, confirming the trends shown by the plots in

Figure 3, where it can be seen that, in most cases, values of α ≥ 0.05 achieved

comparable results. As for the parameter R, we can see that there is a “peak”

around the value 10, which achieved the best performance on six of the 18

data sets considered, while the adjacent values of 5 and 20 achieved the best

results on three data sets. However, the other tested values achieved the best

performance on two data sets, confirming the trends shown in Figure 3 and

Table 4: the choice of R is not critical for our system because the different

values yield comparable results. Therefore, according to the histograms, we

have chosen α = 1.0 and R = 10 as default values. For each data set we
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Table 4: P-values of the Anova test. Values less than the significance level chosen (0.05)

are in bold.

0.0001 0.001 0.01 0.1 0.2 0.5 1

Blood 0.57 0.53 0.21 0.74 0.95 0.55 0.96

Clima 0.91 0.03 0.83 0.90 0.13 0.49 0.30

Eeg 0.24 0.59 0.11 0.16 0.71 0.33 0.59

Fertility 0.01 0.02 0.62 0.14 0.76 0.35 0.90

Gina 0.69 0.78 0.99 0.16 0.78 0.66 0.50

Hill 0.26 0.85 0.51 0.84 0.44 0.58 0.35

Ilpd 0.63 0.12 0.67 0.60 0.62 0.57 0.84

Kc 0.79 0.84 0.85 0.73 0.09 0.28 0.83

Liver 0.59 0.86 0.24 0.07 0.81 0.02 0.55

Musk 0.07 0.88 0.78 0.79 0.43 0.13 0.80

Ozone 0.93 8e−4 0.86 0.04 0.44 0.38 0.42

Pc1 0.99 0.08 0.53 0.28 0.31 0.77 0.85

Pc3 0.76 0.57 0.08 0.12 0.98 0.38 0.25

Qsar 0.03 0.95 0.95 0.40 0.63 0.87 0.65

Retinopathy 0.02 0.03 0.78 0.08 0.20 0.16 0.60

Scene 0.79 0.15 0.34 0.46 0.19 0.64 0.34

Spam 0.18 0.61 0.63 0.92 0.31 0.79 0.36

Spect 0.12 0.78 0.96 0.13 0.12 0.06 0.57
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(a) alpha (b) R

Figure 4: These histograms show the number of datasets in which that value of α (left)

or R (right) achieved the best result amongst all the values tested.

verified whether any differences could be noticed between the performance

achieved by using these values and the best obtained value. The results of

this comparison are shown in Table 5. From Table 5, it can be seen that,

for 13 out of the 18 data sets used for testing our approach, the differences

between the accuracies achieved by using the default values and the best ones

are not statistically significant. Regarding the remaining data sets, we can

note that the differences are not so remarkable, because the relative differ-

ence are always less than 5%. Then, we can conclude that the values α = 1.0

and R = 10 are good candidates as default values for these parameters.

5.4. Comparison results

In this section, we describe the comparison results between the proposed

method and the eleven classifiers mentioned above. We compared the results

in terms of accuracy and F-score (see Section 5.4.1), both calculated on the

test data. The F-score was necessary to viably assess and compare classifiers’
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Table 5: Comparison of the results achieved by using the default values tested (α =

1.0,R = 10) and the best results. Note that the symbol p (second column) represents the

p-value of Wilcoxon test. Values less than the significance level chosen (0.05) are in bold.

Note that for the data sets Hill, Musk, Scene, and Spam the parameters that achieved the

best results coincide with the default ones.

Best α = 1.0,R = 10

Dataset (α,R) error error

p avg std avg std

Blood 0.001 (0.05,1) 0.226 0.004 0.232 0.01

Clima 0.504 (1,5) 0.093 0.004 0.094 0.01

Eeg 0.019 (0.5,10) 0.382 0.02 0.396 0.02

Fertility 0.821 (0.1,20) 0.126 0.01 0.127 0.02

Gina 0.368 (1,20) 0.207 0.02 0.217 0.04

Hill 1.0 (1,10) 0.365 0.05 0.365 0.05

Ilpd 3e−4 (0.05,5) 0.256 0.001 0.269 0.02

Kc 0.589 (1,50) 0.161 0.01 0.162 0.01

Liver 0.063 (0.5,1) 0.353 0.03 0.378 0.05

Musk 1.0 (1,10) 0.242 0.04 0.242 0.04

Ozone 0.389 (0.5,2) 0.065 0.001 0.065 0.001

Pc1 0.046 (0.1,10) 0.076 0.002 0.078 0.01

Pc3 0.004 (0.1,20) 0.107 0.003 0.111 0.01

Qsar 0.086 (1,50) 0.223 0.05 0.243 0.05

Retinopathy 0.124 (1,2) 0.346 0.04 0.358 0.04

Scene 1.0 ( 1.0,10) 0.069 0.03 0.069 0.03

Spam 1.0 ( 1.0,10) 0.118 0.04 0.118 0.04

Spect 0.118 (0.2,5) 0.183 0.02 0.195 0.03
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performance in the context of class imbalance.

To statistically validate the comparison results, we performed two non-

parametric statistical tests: the Wilcoxon rank-sum test [46] and the Fried-

man test [47]. The former compares the performance of pairs of classifiers

on a single data set, whereas the latter performs a statistical validation of

the performance differences for a set of classifiers across multiple data sets.

Note that, for both tests, we rejected the null hypothesis when the p-value

was less than 0.05.

Table 6 exhibits classifiers’ accuracies on the 18 test problems. The first

column reports the average accuracy of the proposed GSGP-based classi-

fier, while the following columns regard the seven base classifiers and the

four ensembles considered in our study. Whenever GSGP’s performance was

found to be statistically superior, worse or equivalent to any other classifier

(after the Wilcoxon rank-sum test), the symbols ’+’, ’-’ and ’≈’ were used,

respectively.

From Table 6 we can be observe that, in terms of win/tie/loss (see last 

row), GSGP outperformed almost all the base classifiers except the NN clas- 

sifier: the proposed GSGP-based classification scheme and the NN classi- fier 

achieved the best performance on eight problems each. What regards GSGP’s 

comparison with the ensemble methods, it can be verified that the latter 

achieved better accuracy in a significantly larger number of problems. Given 

the class-imbalance that several problems exhibit, our analysis will be 

continued in Section 5.4.1 and shade more light on the relative effectiveness of 

the proposed approach.

Figure 5 shows the average ranking of the compared systems in terms
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Figure 5: Average ranking for the test accuracy, computed over the 18 data sets considered, 

achieved by GSGP and the eleven classifiers used for the comparison. The Friedman test 

returned a p-value equal to 1.92E-12 .

of classification accuracy, computed over the 18 data sets. According to the 

Friedman test, the results are statistically significant with a p-value of 

1.92E−12. The figure shows that the GSGP outperformed all the classifiers, 

except the ensemble methods However, it is worth pointing out that the 

ensemble methods used for this comparison combine the responses from at 

least 50 learned models (see Subsection 5.2), whereas GSGP is based on the 

learning of a single tree. Finally, as concerns the NN classifier even if it 

achieved on average a better ranking than GSGP, in the direct comparison it 

achieved a similar performance (win/tie/loss: 8/2/8, see last row of Table

6).

5.4.1. Imbalanced learning

In order to assess the ability of our system to deal with imbalanced data,

we performed two experiments. In the first, we used the F-score measure to

compare our results with those achieved by the other methods. In the sec-

ond, we compared our results with those achieved by using two oversampling

methods, namely K-means Smote and Adasyn.
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F-Score measure evaluation. The results of the F-score measure are split

into two tables, each containing problems with different degrees of imbalance.

Table 7 shows the results achieved on the problems with a degree of imbalance

less than about 0.2, whereas Table 8 shows those achieved on the remaining

problems. The tables shows the F-score, averaged over the test partitions,

first for the proposed GSGP-based classification scheme (column GSGP),

then for the other classifiers considered in our study (these are present in

the successive columns of the table). The F-score function was computed as

follows:

F-score = 2 · precision · recall
precision+ recall

precision =
Ntp

Ntp +Nfp

recall =
Ntp

Ntp +Nfn

(2)

where Ntp (Nfp) is the number of true (false) positives and Ntn (Nfn) is the

number of true (false) negatives.

From Table 7, we can observe that, in terms of win/tie/loss (see table’s 

last row), the proposed GSGP-based system outperformed all the classifiers 

used in the comparison (including the ensembles) except the RF classifier: our 

GSGP-based approach and the RF classifier achieved the best perfor- mance 

on three problems each. This result demonstrates the effectiveness of our 

approach, particularly, when solving binary classification problems with 

class-imbalance.

Looking at Table 8 (degree of imbalance '> 0.20), we can see that GSGP

outperformed six out of seven base classifiers. The only base classifier that
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Figure 6: Average ranking for the test F-score, computed over the 18 considered data sets,

achieved by GSGP and the eleven classifiers used for the comparison. The Friedman test

returned a p-value equal to p = 4.63E − 06

better solved more problems was LG. What regards the ensembles, as is the

case of the accuracy (see Table 6), they achieved better accuracy in a sig-

nificantly larger number of problems. This result was expected because, as

mentioned above, ensemble methods combine responses from multiple mod-

els and they typically outperform classification or regression methods [48]

based on the learning of a single model. However, unlike it was expected,

the same cannot be observed when the assessment involves a higher class-

imbalance (see Table 7). Such a paradoxical situation has an explanation. It

happens that ensembles’ base-learners (i.e., the classifiers that compose the

ensemble), are trained on a bootstrap sample of the training data sample,

which means that, in a given sample, some observations may be repeated,

while others not appear at all. From the literature, when the bootstrap’s

sample size equals the size of the sample from which it was taken, when the

sample size is large, one can expect about 63.2% unique data instances (the

rest being duplicates) [49]. In this sense, when working with an imbalanced

dataset, it is likely that a bootstrap sample contains few or even none of the
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minority class, resulting in a base-learner that poorly predicts the minority

class [50]. To avoid the aforementioned bias by sample, several approaches

were developed by the scientific community. For example, instances’ classes

representation can be taken into account when extracting a bootstrap sample

by using stratified random sampling (aka undersampling). Alternatively, the

loss function can be changed to penalize the base-learners when mistaking

the prediction of data instances from the minority class(es). These and other

techniques can be found in [51].

Figure 6 shows the average ranking of the compared systems in terms

of F-score, computed over the 18 data sets. According to the Friedman

test, the results are statistically significant with a p-value of 4.63E−06. The

figure shows that the GSGP outperforms all the classifiers, except the ensem-

ble methods, confirming its effectiveness when compared with classification

schemes consisting of single models.

In general terms, one can conclude that the results shown in Table 7 and

Table 8 as well as those shown in Figure 6 confirm the effectiveness of the

proposed classification approach, especially in dealing with imbalanced class

distribution.

Oversampling methods. To further assess the ability of our approach to deal 

with imbalanced problems, we compared our results (achieved without using 

any oversampling method but only using the F-score measure as fitness func- 

tion) with those achieved by two oversampling methods, namely K-means 

Smote [52] and Adasyn [53]. However, for the Spect data set we used the 

Smoten approach. We made this choice because Spect data set consists of 

binary features only.
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Table 9 shows the F-score results achieved on the problems with a degree 

of imbalance less than about 0.2, averaged over the test partitions. Note that 

in this case we categorized the comparison results in two categories: win or tie 

vs loss. This because the tie result can be considered as favourable for our 

approach because it was achieved without the costly procedure of data 

oversampling, but just using the F-score measure as fitness function.

From the table we can observe that, in terms of ”win or tie vs loss”, the 

proposed GSGP-based system outperformed seven out of the eleven classi- 

fiers used in the comparison. This can be considered a good result since, as 

mentioned above, it was achieved without using any specifically devised 

strategy to deal with imbalanced data, but only using the F-score measure as 

fitness function.

6. Conclusions and future work

GSGP is a recent enhancement of GP based on the use of semantic oper-

ators that allow the fitness landscape of any supervised learning problem to

be transformed into a new one characterized by the absence of locally sub-

optimal solutions, for which the fitness of a tree is computed on the training

set by summing the distance (error) between the target value of each sample

and the corresponding output values calculated by the tree. These seman-

tic operators have proven their effectiveness in many real-world regression

problems.

In this paper, we presented an extension of GSGP to solve binary classifi-

cation problems. The idea behind the extension, inspired by the functioning

of the perceptron artificial neural network, is extremely simple: the value
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computed by a GSGP tree (a floating-point number, typically used for regres-

sion) is given as input to a sigmoid, to limit the output value in the interval

[0, 1], where the values 0 and 1 are the two class labels. In the experiments

presented here we first investigated how the new parameter introduced (i.e.,

the alpha of the sigmoid) affects the classification performance. Then, we

compared the results of our approach with those achieved by eleven state-

of-the-art classification algorithms, including four ensemble-based methods.

Finally, we used the F-score function as fitness to deal with imbalanced data.

The results of the first set of experiments showed that:

– too small values of α (≤ 0.001) achieve bad performances, which is due

to the fact that these values produce too flat curves, returning similar

output values for very large ranges of input values; this similarity has

the effect of reducing the selective pressure of the evolutionary process;

– the value of the GP-specific parameter R (it represents the limits of the

range of the random constants) does not affect the performance signif-

icantly, confirming that its choice is not critical for the performance of

our system;

– the values α = 1.0 and R = 10 are good candidates as default values

for these parameters.

Regarding the comparison with other state-of-the-art methods, we performed

two nonparametric statistical tests, namely the Wilcoxon rank-sum test and

the Friedman test. The former confirmed that GSGP outperforms six of the

seven base classifiers used for the comparison in terms of win/tie/loss on

the single data sets, whereas, as expected, ensemble methods outperformed

38



GSGP. The latter (computed over the 18 data sets used) confirmed that

GSGP is the top ranked among the classifiers we compared, except the en-

semble methods. Finally, on imbalanced data (represented by six of the 18

data sets used) GSGP, using the F-score as the fitness function, outperforms

all the classifiers used for the comparison, confirming the effectiveness of the

proposed approach in dealing with imbalanced data.

Future work will focus on investigating two aspects. First, to extend the

proposed approach to multi-class problems, we will investigate the use of

combination rules such as the one-versus-all and the one-versus-one, already

successfully used for binary classifiers, such as SVM. Second, we will use en-

semble and combining techniques [54, 55] to improve further the classification

performance achieved.
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