Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/99133
Registo completo
Campo DCValorIdioma
dc.contributor.authorCastelli, Mauro-
dc.contributor.authorGroznik, Aleš-
dc.contributor.authorPopovič, Aleš-
dc.date.accessioned2020-06-10T00:45:03Z-
dc.date.available2020-06-10T00:45:03Z-
dc.date.issued2020-05-08-
dc.identifier.issn1999-4893-
dc.identifier.otherPURE: 18512056-
dc.identifier.otherPURE UUID: 6b57e273-4872-4106-b04c-3a346750e6c7-
dc.identifier.otherScopus: 85085516138-
dc.identifier.otherORCID: /0000-0002-8793-1451/work/75368059-
dc.identifier.otherWOS: 000568115000013-
dc.identifier.urihttp://hdl.handle.net/10362/99133-
dc.descriptionCastelli, M., Groznik, A., & Popovič, A. (2020). Forecasting electricity prices: A machine learning approach. Algorithms, 13(5), 1-16. [119]. https://doi.org/10.3390/A13050119-
dc.description.abstractThe electricity market is a complex, evolutionary, and dynamic environment. Forecasting electricity prices is an important issue for all electricity market participants. In this study, we shed light on how to improve electricity price forecasting accuracy through the use of a machine learning technique-namely, a novel genetic programming approach. Drawing on empirical data from the largest EU energy markets, we propose a forecasting model that considers variables related to weather conditions, oil prices, and CO2 coupons and predicts energy prices 24 h ahead. We show that the proposed model provides more accurate predictions of future electricity prices than existing prediction methods. Our important findings will assist the electricity market participants in forecasting future price movements.en
dc.format.extent16-
dc.language.isoeng-
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/DSAIPA%2FDS%2F0022%2F2018/PT-
dc.rightsopenAccess-
dc.subjectBased programming-
dc.subjectElectricity prices-
dc.subjectEnergy sector-
dc.subjectForecasting-
dc.subjectGeometric semantic-
dc.subjectMachine learning-
dc.subjectTheoretical Computer Science-
dc.subjectNumerical Analysis-
dc.subjectComputational Theory and Mathematics-
dc.subjectComputational Mathematics-
dc.titleForecasting electricity prices-
dc.typearticle-
degois.publication.firstPage1-
degois.publication.issue5-
degois.publication.lastPage16-
degois.publication.titleAlgorithms-
degois.publication.volume13-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.3390/A13050119-
dc.description.versionpublishersversion-
dc.description.versionpublished-
dc.title.subtitleA machine learning approach-
dc.contributor.institutionNOVA Information Management School (NOVA IMS)-
dc.contributor.institutionInformation Management Research Center (MagIC) - NOVA Information Management School-
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Forecasting_Electricity_Prices.pdf2,05 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.