Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/92212
Título: Towards the use of vector based GP to predict physiological time series
Autor: Azzali, Irene
Vanneschi, Leonardo
Bakurov, Illya
Silva, Sara
Ivaldi, Marco
Giacobini, Mario
Palavras-chave: Genetic programming
Machine learning
Physiological data
Time series
Ventilation
Software
SDG 3 - Good Health and Well-being
Data: 1-Abr-2020
Resumo: Prediction of physiological time series is frequently approached by means of machine learning (ML) algorithms. However, most ML techniques are not able to directly manage time series, thus they do not exploit all the useful information such as patterns, peaks and regularities provided by the time dimension. Besides advanced ML methods such as recurrent neural network that preserve the ordered nature of time series, a recently developed approach of genetic programming, VE-GP, looks promising on the problem in analysis. VE-GP allows time series as terminals in the form of a vector, including new strategies to exploit this representation. In this paper we compare different ML techniques on the real problem of predicting ventilation flow from physiological variables with the aim of highlighting the potential of VE-GP. Experimental results show the advantage of applying this technique in the problem and we ascribe the good performances to the ability of properly catching meaningful information from time series.
Descrição: Azzali, I., Vanneschi, L., Bakurov, I., Silva, S., Ivaldi, M., & Giacobini, M. (2020). Towards the use of vector based GP to predict physiological time series. Applied Soft Computing Journal, 89(April), [106097]. https://doi.org/10.1016/j.asoc.2020.106097-----------------------------------------------------------------This work was partially supported by FCT, Portugal, through funding of LASIGE Research Unit (UIDB/00408/2020) and projects INTERPHENO (PTDC/ASP-PLA/28726/2017), PERSEIDS (PTDC/EMS -SIS/0642/2014), OPTOX (PTDC/CTA-AMB/30056/2017), BINDER (PTDC/CCI-INF/29168/2017), AICE (DSAIPA/DS/0113/2019), GADgET (DSAIPA/DS/0022/2018), and PREDICT (PTDC/CCI-CIF/29877/2017). This study was also supported by Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR) under the programme "Dipartimenti di Eccellenza ex L.232/2016'' to the Department of Veterinary Science, University of Turin.
Peer review: yes
URI: http://hdl.handle.net/10362/92212
DOI: https://doi.org/10.1016/j.asoc.2020.106097
ISSN: 1568-4946
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Towards_the_Use_of_Vector_Based_GP_to_Predict.pdf363,74 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.