Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/91747
Registo completo
Campo DCValorIdioma
dc.contributor.authorDouzas, Georgios-
dc.contributor.authorBacao, Fernando-
dc.contributor.authorFonseca, Joao-
dc.contributor.authorKhudinyan, Manvel-
dc.date.accessioned2020-01-24T23:37:26Z-
dc.date.available2020-01-24T23:37:26Z-
dc.date.issued2019-12-01-
dc.identifier.issn2072-4292-
dc.identifier.otherPURE: 16503950-
dc.identifier.otherPURE UUID: 100f5529-f943-411e-b359-595f4d01e01c-
dc.identifier.otherScopus: 85077851143-
dc.identifier.otherWOS: 000507333400154-
dc.identifier.otherORCID: /0000-0002-0834-0275/work/153306402-
dc.identifier.urihttp://hdl.handle.net/10362/91747-
dc.descriptionDouzas, G., Bacao, F., Fonseca, J., & Khudinyan, M. (2019). Imbalanced learning in land cover classification: Improving minority classes' prediction accuracy using the geometric SMOTE algorithm. Remote Sensing, 11(24), [3040]. https://doi.org/10.3390/rs11243040-
dc.description.abstractThe automatic production of land use/land cover maps continues to be a challenging problem, with important impacts on the ability to promote sustainability and good resource management. The ability to build robust automatic classifiers and produce accurate maps can have a significant impact on the way we manage and optimize natural resources. The difficulty in achieving these results comes from many different factors, such as data quality and uncertainty. In this paper, we address the imbalanced learning problem, a common and difficult conundrum in remote sensing that affects the quality of classification results, by proposing Geometric-SMOTE, a novel oversampling method, as a tool for addressing the imbalanced learning problem in remote sensing. Geometric-SMOTE is a sophisticated oversampling algorithm which increases the quality of the instances generated in previous methods, such as the synthetic minority oversampling technique. The performance of Geometric- SMOTE, in the LUCAS (Land Use/Cover Area Frame Survey) dataset, is compared to other oversamplers using a variety of classifiers. The results show that Geometric-SMOTE significantly outperforms all the other oversamplers and improves the robustness of the classifiers. These results indicate that, when using imbalanced datasets, remote sensing researchers should consider the use of these new generation oversamplers to increase the quality of the classification results.en
dc.language.isoeng-
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/DSAIPA%2FAI%2F0100%2F2018/PT-
dc.rightsopenAccess-
dc.subjectClass imbalance-
dc.subjectGeometric-SMOTE-
dc.subjectImbalanced learning-
dc.subjectLULC classification-
dc.subjectOversampling-
dc.subjectEarth and Planetary Sciences(all)-
dc.subjectSDG 15 - Life on Land-
dc.titleImbalanced learning in land cover classification-
dc.typearticle-
degois.publication.issue24-
degois.publication.titleRemote Sensing-
degois.publication.volume11-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.3390/rs11243040-
dc.description.versionpublishersversion-
dc.description.versionpublished-
dc.title.subtitleImproving minority classes' prediction accuracy using the geometric SMOTE algorithm-
dc.contributor.institutionInformation Management Research Center (MagIC) - NOVA Information Management School-
dc.contributor.institutionNOVA Information Management School (NOVA IMS)-
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Imbalanced_Learning_Land_Cover_Classification.pdf1,07 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.