Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/81595
Título: GSGP-C++ 2.0
Autor: Castelli, Mauro
Manzoni, Luca
Palavras-chave: Genetic programming
Machine learning
Semantics
Software
Computer Science Applications
Data: 1-Jul-2019
Resumo: Geometric semantic operators (GSOs) for Genetic Programming have been widely investigated in recent years, producing competitive results with respect to standard syntax based operator as well as other well-known machine learning techniques. The usage of GSOs has been facilitated by a C++ framework that implements these operators in a very efficient manner. This work presents a description of the system and focuses on a recently implemented feature that allows the user to store the information related to the best individual and to evaluate new data in a time that is linear with respect to the number of generations used to find the optimal individual. The paper presents the main features of the system and provides a step by step guide for interested users or developers.
Descrição: Castelli, M., & Manzoni, L. (2019). GSGP-C++ 2.0: A geometric semantic genetic programming framework. SoftwareX, 10, [100313]. https://doi.org/10.1016/j.softx.2019.100313
Peer review: yes
URI: http://www.scopus.com/inward/record.url?scp=85071718915&partnerID=8YFLogxK
DOI: https://doi.org/10.1016/j.softx.2019.100313
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
MCastelli_LManzoni_2019.pdf518,21 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.