Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/81595| Título: | GSGP-C++ 2.0 |
| Autor: | Castelli, Mauro Manzoni, Luca |
| Palavras-chave: | Genetic programming Machine learning Semantics Software Computer Science Applications |
| Data: | 1-Jul-2019 |
| Resumo: | Geometric semantic operators (GSOs) for Genetic Programming have been widely investigated in recent years, producing competitive results with respect to standard syntax based operator as well as other well-known machine learning techniques. The usage of GSOs has been facilitated by a C++ framework that implements these operators in a very efficient manner. This work presents a description of the system and focuses on a recently implemented feature that allows the user to store the information related to the best individual and to evaluate new data in a time that is linear with respect to the number of generations used to find the optimal individual. The paper presents the main features of the system and provides a step by step guide for interested users or developers. |
| Descrição: | Castelli, M., & Manzoni, L. (2019). GSGP-C++ 2.0: A geometric semantic genetic programming framework. SoftwareX, 10, [100313]. https://doi.org/10.1016/j.softx.2019.100313 |
| Peer review: | yes |
| URI: | http://www.scopus.com/inward/record.url?scp=85071718915&partnerID=8YFLogxK |
| DOI: | https://doi.org/10.1016/j.softx.2019.100313 |
| Aparece nas colecções: | NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals) |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| MCastelli_LManzoni_2019.pdf | 518,21 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











