Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/57815
Registo completo
Campo DCValorIdioma
dc.contributor.authorMishra, Sumit-
dc.contributor.authorBhattacharya, Devanjan-
dc.contributor.authorGupta, Ankit-
dc.date.accessioned2019-01-17T23:43:40Z-
dc.date.available2019-01-17T23:43:40Z-
dc.date.issued2018-12-14-
dc.identifier.issn2306-5729-
dc.identifier.otherPURE: 11285737-
dc.identifier.otherPURE UUID: cf0831a3-3dcb-44a8-ab34-3264f2eb641c-
dc.identifier.otherWOS: 000454696600030-
dc.identifier.otherScopus: 85063495409-
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000454696600030-
dc.descriptionMishra, S., Bhattacharya, D., & Gupta, A. (2018). Congestion Adaptive Traffic Light Control and Notification Architecture Using Google Maps APIs. Data, 3(4), [67]. DOI: 10.3390/data3040067-
dc.description.abstractTraffic jams can be avoided by controlling traffic signals according to quickly building congestion with steep gradients on short temporal and small spatial scales. With the rising standards of computational technology, single-board computers, software packages, platforms, and APIs (Application Program Interfaces), it has become relatively easy for developers to create systems for controlling signals and informative systems. Hence, for enhancing the power of Intelligent Transport Systems in automotive telematics, in this study, we used crowdsourced traffic congestion data from Google to adjust traffic light cycle times with a system that is adaptable to congestion. One aim of the system proposed here is to inform drivers about the status of the upcoming traffic light on their route. Since crowdsourced data are used, the system does not entail the high infrastructure cost associated with sensing networks. A full system module-level analysis is presented for implementation. The system proposed is fail-safe against temporal communication failure. Along with a case study for examining congestion levels, generic information processing for the cycle time decision and status delivery system was tested and confirmed to be viable and quick for a restricted prototype model. The information required was delivered correctly over sustained trials, with an average time delay of 1.5 s and a maximum of 3 s.en
dc.format.extent19-
dc.language.isoeng-
dc.rightsopenAccess-
dc.subjectdriver information system-
dc.subjectreal-time traffic signaling-
dc.subjectroad traffic congestion-
dc.subjectGoogle Traffic API-
dc.subjectagent-based traffic modeling-
dc.subjectSDG 9 - Industry, Innovation, and Infrastructure-
dc.titleCongestion Adaptive Traffic Light Control and Notification Architecture Using Google Maps APIs-
dc.typearticle-
degois.publication.issue4-
degois.publication.titleData-
degois.publication.volume3-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.3390/data3040067-
dc.description.versionpublishersversion-
dc.description.versionpublished-
dc.contributor.institutionNOVA Information Management School (NOVA IMS)-
dc.contributor.institutionInformation Management Research Center (MagIC) - NOVA Information Management School-
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
SMishra_DBhattacharya_AGupta_2018.pdf4,27 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.