Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/55742
Registo completo
Campo DCValorIdioma
dc.contributor.authorSchuberth, Florian-
dc.contributor.authorHenseler, Jörg-
dc.contributor.authorDijkstra, Theo K.-
dc.date.accessioned2018-12-26T23:16:46Z-
dc.date.available2018-12-26T23:16:46Z-
dc.date.issued2018-12-13-
dc.identifier.issn1664-1078-
dc.identifier.otherPURE: 10973174-
dc.identifier.otherPURE UUID: 4161b1a7-3b38-4bda-8087-d2a859efc8a6-
dc.identifier.otherScopus: 85058418956-
dc.identifier.otherWOS: 000453336000001-
dc.identifier.urihttp://www.scopus.com/inward/record.url?scp=85058418956&partnerID=8YFLogxK-
dc.identifier.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS_CPL&DestLinkType=FullRecord&UT=WOS:000453336000001-
dc.descriptionSchuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Confirmatory composite analysis. Frontiers in Psychology, 9(DEC), [02541]. DOI: 10.3389/fpsyg.2018.02541-
dc.description.abstractThis article introduces confirmatory composite analysis (CCA) as a structural equation modeling technique that aims at testing composite models. It facilitates the operationalization and assessment of design concepts, so-called artifacts. CCA entails the same steps as confirmatory factor analysis: model specification, model identification, model estimation, and model assessment. Composite models are specified such that they consist of a set of interrelated composites, all of which emerge as linear combinations of observable variables. Researchers must ensure theoretical identification of their specified model. For the estimation of the model, several estimators are available; in particular Kettenring's extensions of canonical correlation analysis provide consistent estimates. Model assessment mainly relies on the Bollen-Stine bootstrap to assess the discrepancy between the empirical and the estimated model-implied indicator covariance matrix. A Monte Carlo simulation examines the efficacy of CCA, and demonstrates that CCA is able to detect various forms of model misspecification.en
dc.language.isoeng-
dc.rightsopenAccess-
dc.subjectArtifacts-
dc.subjectComposite modeling-
dc.subjectDesign research-
dc.subjectMonte Carlo simulation study-
dc.subjectStructural equation modeling-
dc.subjectTheory testing-
dc.subjectPsychology(all)-
dc.titleConfirmatory composite analysis-
dc.typearticle-
degois.publication.issueDEC-
degois.publication.titleFrontiers in Psychology-
degois.publication.volume9-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.3389/fpsyg.2018.02541-
dc.description.versionpublishersversion-
dc.description.versionpublished-
dc.contributor.institutionNOVA Information Management School (NOVA IMS)-
dc.contributor.institutionInformation Management Research Center (MagIC) - NOVA Information Management School-
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
FSchuberth_JHenser_TKDijkstra_2018.pdf2,47 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.