Please use this identifier to cite or link to this item:
Title: Pliocene-quaternary upwelling in the SoutheasternAtlantic may reflect changes in water mass production
Author: Hay, W. W.
Keywords: Upwelling
Water masses
Opaline silica
Organic carbon
Issue Date: 1992
Abstract: The sediments recovered at Deep Sea Drilling Project Sites 362 and 532 on Walvis Ridge Abutment Plateau and at Site 530 in the southeastern Angola Basin record long-term changes in the rates of upwelling. Deposition of opaline silica and organic carbon increased from latest Miocene to latest Pliocene then declined to present. The sediments display light-dark cycles. The dark cycles contain more terrigenous material and represent glacials. During the Late Miocene the productivity maxima were characteristic of glacial maxima in the Antarctic. Since the beginning ofthe Pliocene productivity maxima have occurred during interglacials. The most likely causes of these changes are: 1) desiccation and reflooding of the Mediterranean. The desiccation drew the ITCZ to its most northerly position. After reflooding the Mediterranean had a positive fresh-water balance until about 2.5 Ma, when it changed to its present negative balance and lagoonal circulation. The period during which productivity increased along the southwest African margin corresponds to the time when the Mediterranean had a positive fresh-water balance and estuarine circulation. During this time the Mediterranean supplied no intermediate water to the North Atlantic. The decline in productivity off southwest Africa corresponds to the time when lagoonal circulation developed in the Mediterranean and, as at present, its outflow forms a major intermediate water mass. During glacials the more dilute saline Mediterranean outflow resulted in the expansion of nutrient-poor North Atlantic Intermediate Water (NAIW) at a higher level in the ocean. The NAIW replaced AAIW in the South Atlantic during glacials. Upwelling along Southwest Africa may have increased as a result of increased wind stress, but the upwelled water was NAIW, and did not result in increased productivity. 2) growth of the Antarctic and Northern Hemisphere ice caps. During the Late Miocene growth of the Antarctic ice cap forced northward migration of the subtropical highs and Intertropical Convergence Zone (ITCZ). These changes in atmospheric circulation may have initiated productive upwelling over the Walvis Abutment Plateau. As Northern Hemisphere glaciation was initiated, the Earth changed from a unipolar to a bipolar glaciated state. This forced southward migration of the ITCZand an increase in the intensity of the southeast trade winds. 3) closing of the Central American Straits. The resulting salinization of the North Atlantic forced increased production of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW). The production ofNADW resulted in nutrient export from the North Atlantic and development of the contrast between nutrient-rich southern and nutrient-poor northern intermediate and deep water masses. The combination of all these changes is probably responsible for the observed pattern of change in productivity. Hay and Brock's (1992) explanation oflessened productivity during glacials being due to upwelling of nutrient-poor NAIW rather than AAIW remains a viable hypothesis.
Description: Proceedings of tile 1" R.C.A.N.S. Congress, Lisboa, October 1992
Appears in Collections:FCT: DCT - Ciências da Terra

Files in This Item:
File Description SizeFormat 
CT_12_18.pdf723,94 kBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.