Please use this identifier to cite or link to this item:
Title: Transverse Vibrations in Beams Supported by a Piece-Wise Homogeneous Visco- Elastic Foundation
Author: Dimitrovová, Zuzana
Frýba, Ladislav
Keywords: moving load, moving mass, transversal vibration, transition radiation, normal-mode analysis, dynamic stiffness matrix, natural frequencies, orthonormal mode shapes.
Issue Date: 1-Jan-2009
Series/Report no.: none
Abstract: Transversal vibrations induced by a load moving uniformly along an infinite beam resting on a piece-wise homogeneous visco-elastic foundation are studied. Special attention is paid to the additional vibrations, conventionally referred to as transition radiations, which arise as the point load traverses the place of foundation discontinuity. The governing equations of the problem are solved by the normalmode analysis. The solution is expressed in a form of infinite sum of orthogonal natural modes multiplied by the generalized coordinate of displacement. The natural frequencies are obtained numerically exploiting the concept of the global dynamic stiffness matrix. This ensures that the frequencies obtained are exact. The methodology has restrictions neither on velocity nor on damping. The approach looks simple, though, the numerical expression of the results is not straightforward. A general procedure for numerical implementation is presented and verified. To illustrate the utility of the methodology parametric optimization is presented and influence of the load mass is studied. The results obtained have direct application in analysis of railway track vibrations induced by high-speed trains when passing regions with significantly different foundation stiffness.
ISBN: 978-1-905088-32-4
Appears in Collections:FCT: DEC - Documentos de conferências internacionais

Files in This Item:
File Description SizeFormat 
CC2009_artigo.pdf203,06 kBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.