Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/190240| Título: | Deep learning classification approaches and applications for energy performance certificates (EPCs) |
| Autor: | Anastasiadou, Maria Santos, Vítor Dias, Miguel Sales |
| Palavras-chave: | Energy Performance Certificates Artificial Intelligence Deep learning Artificial Neural Networks Synthetic Minority Oversampling Technique Principal Component Analysis 7th Sustainable Development Goal SDG 7 - Affordable and Clean Energy |
| Data: | 1-Dez-2025 |
| Resumo: | Building energy performance classification is a cornerstone of sustainable development initiatives. This study presents an innovative approach leveraging Artificial Neural Networks to classify Energy Performance Certificates. Our Artificial Neural Networks model, integrating the Synthetic Minority Oversampling Technique for class balancing and Principal Component Analysis for dimensionality reduction, achieved a test accuracy of 93.44 %, supported by a macro and weighted F1-score of 0.93, outperforming many existing models and creating a unique sequence and combination of methods to conclude in that result. A detailed analysis of class-level performance underscores its robustness for high-rated energy classes while revealing challenges in differentiating lower-rated classes. This work bridges the gap between high-performance AI models and their interpretability, setting a benchmark for future energy performance certificate classification studies. |
| Descrição: | Anastasiadou, M., Santos, V., & Dias, M. S. (2025). Deep learning classification approaches and applications for energy performance certificates (EPCs). Energy, 339, Article 139148. https://doi.org/10.1016/j.energy.2025.139148 --- This research was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT), under the MIT Portugal Program (MPP) doctoral fellowship grant PRT/BD/152840/2021, and Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. |
| Peer review: | yes |
| URI: | http://hdl.handle.net/10362/190240 |
| DOI: | https://doi.org/10.1016/j.energy.2025.139148 |
| ISSN: | 0360-5442 |
| Aparece nas colecções: | NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals) |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| DL_classification_EPC.pdf | 6,16 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











