Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/184755
Título: Predicting key touchpoints in hotel customer journey
Autor: Rodrigues, Duarte
Jardim, Bruno
Neto, Miguel de Castro
Palavras-chave: Classification
Customer journey
Hospitality
Machine learning
Touchpoints
Tourism, Leisure and Hospitality Management
Marketing
Data: Jun-2025
Resumo: This paper investigates machine learning’s role in predicting key hotel touchpoint interactions across their journey, improving customer lifetime value and loyalty. Prior studies focused on cancellations and revenue, neglecting other guest interactions. Using data from a resort hotel and a city hotel, we employ several algorithms, achieving recall scores over 80% for cancellations, F1 Scores of 66% and 85% for food package predictions, and AUC and recall rates exceeding 90% for rebooking. Variables such as lead time, deposit type, booking changes, and previous cancellations are fundamental for our models, contributing to the literature of predictive capabilities in hospitality.
Descrição: Rodrigues, D., Jardim, B., & Neto, M. D. C. (2025). Predicting key touchpoints in hotel customer journey: a comparison of machine learning models. Journal of Travel and Tourism Marketing, 42(5), 609-626. https://doi.org/10.1080/10548408.2025.2456083 --- %ABS2% --- This work was funded by Portuguese national funds through the Portuguese Foundation for Science and Technology—FCT under research grant FCT UIDB/04152/2020–Centro de Investigação em Gestão de Informação (MagIC).
Peer review: yes
URI: http://hdl.handle.net/10362/184755
DOI: https://doi.org/10.1080/10548408.2025.2456083
ISSN: 1054-8408
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Predicting_key_touchpoints_in_hotel_customer_journey_AAM.pdf984,23 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.