Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/182898
Título: Effective reduction of unnecessary biopsies through a deep-learning-assisted aggressive prostate cancer detector
Autor: ProCAncer-I Consortium
Rodrigues, Nuno M.
Almeida, José Guilherme de
Verde, Ana Sofia Castro
Gaivão, Ana Mascarenhas
Bireiro, Carlos
Santiago, Inês
Ip, Joana
Belião, Sara
Matos, Celso
Vanneschi, Leonardo
Tsiknakis, Manolis
Marias, Kostas
Regge, Daniele
Silva, Sara
Papanikolaou, Nickolas
Palavras-chave: Cancer imaging
Machine learning
Prostate cancer
General
SDG 3 - Good Health and Well-being
Data: 30-Abr-2025
Resumo: Despite being one of the most prevalent cancers, prostate cancer (PCa) shows a significantly high survival rate, provided there is timely detection and treatment. Currently, several screening and diagnostic tests are required to be carried out in order to detect PCa. These tests are often invasive, requiring either a biopsy (Gleason score and ISUP) or blood tests (PSA). Computational methods have been shown to help this process, using multiparametric MRI (mpMRI) data to detect PCa, effectively providing value during the diagnosis and monitoring stages. While delineating lesions requires a high degree of experience and expertise from the radiologists, being subject to a high degree of inter-observer variability, often leading to inconsistent readings, these computational models can leverage the information from mpMRI to locate the lesions with a high degree of certainty. By considering as positive samples only those that have an ISUP 2 we can train aggressive index lesion detection models. The main advantage of this approach is that, by focusing only on aggressive disease, the output of such a model can also be seen as an indication for biopsy, effectively reducing unnecessary biopsy screenings. In this work, we utilize both the highly heterogeneous ProstateNet dataset, and the PI-CAI dataset, to develop accurate aggressive disease detection models.
Descrição: ProCAncer-I Consortium, Rodrigues, N. M., Almeida, J. G. D., Verde, A. S. C., Gaivão, A. M., Bireiro, C., Santiago, I., Ip, J., Belião, S., Matos, C., Vanneschi, L., Tsiknakis, M., Marias, K., Regge, D., Silva, S., & Papanikolaou, N. (2025). Effective reduction of unnecessary biopsies through a deep-learning-assisted aggressive prostate cancer detector. Scientific Reports, 15, 1-15. Article 15211. https://doi.org/10.1038/s41598-025-99795-y --- This work was supported by FCT through the LASIGE Research Unit, ref. UID/000408/2025, and Nuno Rodrigues PhD Grant10.54499/2021.05322.BD (https://doi.org/10.54499/2021.05322.BD). Ana Sofia and José Guilherme de Almeida were supported by the European Union H2020: ProCAncer-I project (EU grant 952159). This work was supported by national funds throughFCT (Fundação para a Ciência e a Tecnologia), under the project UIDB/04152/2020 (https://doi.org/10.54499/UIDB/04152/2020) -Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.
Peer review: yes
URI: http://hdl.handle.net/10362/182898
DOI: https://doi.org/10.1038/s41598-025-99795-y
ISSN: 2045-2322
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Effective_reduction_biopsies_deep_learning_prostate_cancer_detector.pdf5,36 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.