Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/16802
Título: Using artificial neural networks to generate trading signals for crude oil, copper and gold futures
Autor: Schulze-Roebbecke, Lukas
Orientador: Pereira, João Pedro
Data de Defesa: Jan-2016
Resumo: In this thesis, a feed-forward, back-propagating Artificial Neural Network using the gradient descent algorithm is developed to forecast the directional movement of daily returns for WTI, gold and copper futures. Out-of-sample back-test results vary, with some predictive abilities for copper futures but none for either WTI or gold. The best statistically significant hit rate achieved was 57% for copper with an absolute return Sharpe Ratio of 1.25 and a benchmarked Information Ratio of 2.11.
URI: http://hdl.handle.net/10362/16802
Designação: A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
SchulzeRoebbecke_2016.pdf733,53 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.