Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/16802| Título: | Using artificial neural networks to generate trading signals for crude oil, copper and gold futures |
| Autor: | Schulze-Roebbecke, Lukas |
| Orientador: | Pereira, João Pedro |
| Data de Defesa: | Jan-2016 |
| Resumo: | In this thesis, a feed-forward, back-propagating Artificial Neural Network using the gradient descent algorithm is developed to forecast the directional movement of daily returns for WTI, gold and copper futures. Out-of-sample back-test results vary, with some predictive abilities for copper futures but none for either WTI or gold. The best statistically significant hit rate achieved was 57% for copper with an absolute return Sharpe Ratio of 1.25 and a benchmarked Information Ratio of 2.11. |
| URI: | http://hdl.handle.net/10362/16802 |
| Designação: | A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics |
| Aparece nas colecções: | NSBE: Nova SBE - MA Dissertations |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| SchulzeRoebbecke_2016.pdf | 733,53 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











