Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/16802
Registo completo
Campo DCValorIdioma
dc.contributor.advisorPereira, João Pedro-
dc.contributor.authorSchulze-Roebbecke, Lukas-
dc.date.accessioned2016-03-15T15:52:49Z-
dc.date.available2016-03-15T15:52:49Z-
dc.date.issued2016-01-
dc.identifier.urihttp://hdl.handle.net/10362/16802-
dc.description.abstractIn this thesis, a feed-forward, back-propagating Artificial Neural Network using the gradient descent algorithm is developed to forecast the directional movement of daily returns for WTI, gold and copper futures. Out-of-sample back-test results vary, with some predictive abilities for copper futures but none for either WTI or gold. The best statistically significant hit rate achieved was 57% for copper with an absolute return Sharpe Ratio of 1.25 and a benchmarked Information Ratio of 2.11.pt_PT
dc.language.isoengpt_PT
dc.rightsopenAccesspt_PT
dc.titleUsing artificial neural networks to generate trading signals for crude oil, copper and gold futurespt_PT
dc.typemasterThesispt_PT
thesis.degree.nameA Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economicspt_PT
dc.identifier.tid201526212-
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
SchulzeRoebbecke_2016.pdf733,53 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.