Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/16802Registo completo
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.advisor | Pereira, João Pedro | - |
| dc.contributor.author | Schulze-Roebbecke, Lukas | - |
| dc.date.accessioned | 2016-03-15T15:52:49Z | - |
| dc.date.available | 2016-03-15T15:52:49Z | - |
| dc.date.issued | 2016-01 | - |
| dc.identifier.uri | http://hdl.handle.net/10362/16802 | - |
| dc.description.abstract | In this thesis, a feed-forward, back-propagating Artificial Neural Network using the gradient descent algorithm is developed to forecast the directional movement of daily returns for WTI, gold and copper futures. Out-of-sample back-test results vary, with some predictive abilities for copper futures but none for either WTI or gold. The best statistically significant hit rate achieved was 57% for copper with an absolute return Sharpe Ratio of 1.25 and a benchmarked Information Ratio of 2.11. | pt_PT |
| dc.language.iso | eng | pt_PT |
| dc.rights | openAccess | pt_PT |
| dc.title | Using artificial neural networks to generate trading signals for crude oil, copper and gold futures | pt_PT |
| dc.type | masterThesis | pt_PT |
| thesis.degree.name | A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics | pt_PT |
| dc.identifier.tid | 201526212 | - |
| dc.subject.fos | Domínio/Área Científica::Ciências Sociais::Economia e Gestão | pt_PT |
| Aparece nas colecções: | NSBE: Nova SBE - MA Dissertations | |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| SchulzeRoebbecke_2016.pdf | 733,53 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











