Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/165179
Título: Data Science for the Assessment of Operation Errors and their Impact
Autor: Santos, Laura Maria Romeiro
Orientador: Coelho, Pedro Miguel Pereira Simões
Palavras-chave: Community Funds
Error prediction
XGBoost
Model-based estimation
SDG 8 - Decent work and economic growth
SDG 11 - Sustainable cities and communities
SDG 16 - Peace, justice and strong institutions
SDG 17 - Partnerships for the goals
Data de Defesa: 6-Fev-2024
Resumo: The vast amount financed annually by the European Union for community funds requires rigorous monitoring of the operations allocated to funds. Nowadays, this monitoring is achieved through auditing, which is laborious, costly, and naturally done solely upon a sample of operations, not guaranteeing the conclusiveness of the results. This study explores the feasibility of applying data-science techniques to predict the error of the operations, in complement or, ultimately, replacement of the auditing procedure. We tested two estimation methods based on the data from three funds over two auditing years. We compared them with a benchmark estimation approach in terms of the ability and precision to predict the total error amount and conclusiveness. We experimented with the framework of this study with 1-stage and 2-stage approaches, the last adding a classification step to filter only the operations with error to the prediction stage. Our findings confirm that the assessment of operation error benefits from using a model compared to the traditional estimation method, especially when using the model-assisted estimation. Furthermore, a 1-stage prediction pipeline produces satisfactory results, which are not improved with an additional modeling step.
Descrição: Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics
URI: http://hdl.handle.net/10362/165179
Designação: Mestrado em Ciência de Dados e Métodos Analíticos Avançados, especialização em Métodos Analíticos para a Gestão
Aparece nas colecções:NIMS - Dissertações de Mestrado em Ciência de Dados e Métodos Analíticos Avançados (Data Science and Advanced Analytics)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
TCDMAA2579.pdf1,56 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.