Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/165179
Registo completo
Campo DCValorIdioma
dc.contributor.advisorCoelho, Pedro Miguel Pereira Simões-
dc.contributor.authorSantos, Laura Maria Romeiro-
dc.date.accessioned2024-03-20T09:37:30Z-
dc.date.available2024-03-20T09:37:30Z-
dc.date.issued2024-02-06-
dc.identifier.urihttp://hdl.handle.net/10362/165179-
dc.descriptionProject Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analyticspt_PT
dc.description.abstractThe vast amount financed annually by the European Union for community funds requires rigorous monitoring of the operations allocated to funds. Nowadays, this monitoring is achieved through auditing, which is laborious, costly, and naturally done solely upon a sample of operations, not guaranteeing the conclusiveness of the results. This study explores the feasibility of applying data-science techniques to predict the error of the operations, in complement or, ultimately, replacement of the auditing procedure. We tested two estimation methods based on the data from three funds over two auditing years. We compared them with a benchmark estimation approach in terms of the ability and precision to predict the total error amount and conclusiveness. We experimented with the framework of this study with 1-stage and 2-stage approaches, the last adding a classification step to filter only the operations with error to the prediction stage. Our findings confirm that the assessment of operation error benefits from using a model compared to the traditional estimation method, especially when using the model-assisted estimation. Furthermore, a 1-stage prediction pipeline produces satisfactory results, which are not improved with an additional modeling step.pt_PT
dc.language.isoengpt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectCommunity Fundspt_PT
dc.subjectError predictionpt_PT
dc.subjectXGBoostpt_PT
dc.subjectModel-based estimationpt_PT
dc.subjectSDG 8 - Decent work and economic growthpt_PT
dc.subjectSDG 11 - Sustainable cities and communitiespt_PT
dc.subjectSDG 16 - Peace, justice and strong institutionspt_PT
dc.subjectSDG 17 - Partnerships for the goalspt_PT
dc.titleData Science for the Assessment of Operation Errors and their Impactpt_PT
dc.typemasterThesispt_PT
thesis.degree.nameMestrado em Ciência de Dados e Métodos Analíticos Avançados, especialização em Métodos Analíticos para a Gestãopt_PT
dc.identifier.tid203553195pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopt_PT
Aparece nas colecções:NIMS - Dissertações de Mestrado em Ciência de Dados e Métodos Analíticos Avançados (Data Science and Advanced Analytics)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
TCDMAA2579.pdf1,56 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.