Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/164512
Título: Analysis of domain shift in whole prostate gland, zonal and lesions segmentation and detection, using multicentric retrospective data
Autor: ProCAncer-I Consortium
Rodrigues, Nuno Miguel
Almeida, José Guilherme de
Verde, Ana Sofia Castro
Gaivão, Ana Mascarenhas
Bilreiro, Carlos
Santiago, Inês
Ip, Joana
Belião, Sara
Moreno, Raquel
Matos, Celso
Vanneschi, Leonardo
Tsiknakis, Manolis
Marias, Kostas
Regge, Daniele
Silva, Sara
Papanikolaou, Nickolas
Palavras-chave: ProstateNet
Prostate segmentation
Lesion segmentation
Zone segmentation
Health Informatics
Computer Science Applications
SDG 3 - Good Health and Well-being
Data: 1-Mar-2024
Resumo: Despite being one of the most prevalent forms of cancer, prostate cancer (PCa) shows a significantly high survival rate, provided there is timely detection and treatment. Computational methods can help make this detection process considerably faster and more robust. However, some modern machine-learning approaches require accurate segmentation of the prostate gland and the index lesion. Since performing manual segmentations is a very time-consuming task, and highly prone to inter-observer variability, there is a need to develop robust semi-automatic segmentation models. In this work, we leverage the large and highly diverse ProstateNet dataset, which includes 638 whole gland and 461 lesion segmentation masks, from 3 different scanner manufacturers provided by 14 institutions, in addition to other 3 independent public datasets, to train accurate and robust segmentation models for the whole prostate gland, zones and lesions. We show that models trained on large amounts of diverse data are better at generalizing to data from other institutions and obtained with other manufacturers, outperforming models trained on single-institution single-manufacturer datasets in all segmentation tasks. Furthermore, we show that lesion segmentation models trained on ProstateNet can be reliably used as lesion detection models.
Descrição: Rodrigues, N. M., Almeida, J. G. D., Verde, A. S. C., Gaivão, A. M., Bilreiro, C., Santiago, I., Ip, J., Belião, S., Moreno, R., Matos, C., Vanneschi, L., Tsiknakis, M., Marias, K., Regge, D., Silva, S., & Papanikolaou, N. (2024). Analysis of domain shift in whole prostate gland, zonal and lesions segmentation and detection, using multicentric retrospective data. Computers in Biology and Medicine, 171, 1-22. Article 108216. https://doi.org/10.1016/j.compbiomed.2024.108216 --- This work was partially supported by the Fundação para a Ciência e a Tecnologia, Portugal, through funding of the LASIGE Research Unit refs. UIDB/00408/2020 (https://doi.org/10.54499/UIDB/00408/2020), UIDP/00408/2020 (https://doi.org/10.54499/UIDP/00408/2020) and UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. Nuno M. Rodrigues was supported by PhD Grant 2021/05322/BD. All authors except Nuno Rodrigues, Leonardo Vanneschi and Sara Silva, were supported by the European Union H2020: ProCAncer-I project (EU grant 952159)
Peer review: yes
URI: http://hdl.handle.net/10362/164512
DOI: https://doi.org/10.1016/j.compbiomed.2024.108216
ISSN: 0010-4825
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)



FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.