Please use this identifier to cite or link to this item: http://hdl.handle.net/10362/155554
Title: Mechanistic insights into the electrochemical reduction of CO2 to CO on Ni(salphen) complexes
Author: Realista, S.
Costa, Paulo J.
Maia, Luísa
Calhorda, Maria José
Martinho, Paulo N.
Keywords: Inorganic Chemistry
SDG 13 - Climate Action
Issue Date: Jul-2023
Abstract: Cyclic voltammetry and bulk electrolysis showed that [Ni(ii)(salphen)] [1], [Ni(ii)(tBu-salphen)] [2], and a binuclear Ni(ii) compound combining salphen and tBu-salphen [3] react with CO2 to yield a metal-carbonyl species that is stable under an oxygen free atmosphere. Upon exposure to air, a stoichiometric amount of CO is released (detected by gas chromatography) and protonation regenerates the initial complex. To shed light on the mechanism of CO2 reduction and O2-dependent CO release by [1], UV-vis, EPR and SEC-IR spectroscopy studies complemented with DFT calculations were performed. It is proposed that the mono reduced [Ni(i)(salphen)]−, 2[1]−, formed a CO2 complex, 2[1(CO2)]−, which was then further reduced to 3[1(CO2)]2−. After addition of two protons, the coordinated CO2 was reduced to CO and released, regenerating 1[1]. Alternatively, 2[1(CO2)]− is protonated and then reduced to the same intermediate as before, continuing the same way. In the second cycle, the CO released competed with CO2 and coordinated to 2[1]− much more strongly, thereby deactivating the system. The new 2[1(CO)]− was reduced to 3[1(CO)]2− which was identified by comparison of experimental spectroscopic (UV-vis, EPR, SEC-IR) data with DFT calculated parameters.
Description: LA/P/0056/2020. The NMR spectrometers are part of the National NMR Network (PTNMR) and are partially supported by Infrastructure Project No 022161 (co-financed by FEDER through COMPETE 2020, POCI and PORL and FCT through PIDDAC). FCT is acknowledged for PTDCQUI-QIN0252_2021 (PNM). The CARISMA COST action CM1205 is acknowledged. MJC thanks N. A. G. Bandeira for technical assistance. The CATSUS doctoral programme is also acknowledged. Publisher Copyright: © 2023 The Royal Society of Chemistry.
Peer review: yes
URI: http://hdl.handle.net/10362/155554
DOI: https://doi.org/10.1039/d3qi00424d
ISSN: 2052-1553
Appears in Collections:FCT: DQ - Artigos em revista internacional com arbitragem científica

Files in This Item:
File Description SizeFormat 
Mechanistic_insights_into_the_electrochemical.pdf2,41 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.