Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/151420
Registo completo
Campo DCValorIdioma
dc.contributor.authorRubio-Largo, Álvaro-
dc.contributor.authorVanneschi, Leonardo-
dc.contributor.authorCastelli, Mauro-
dc.contributor.authorVega-Rodríguez, Miguel A.-
dc.date.accessioned2023-03-30T22:10:20Z-
dc.date.available2024-01-27T01:32:02Z-
dc.date.issued2018-10-01-
dc.identifier.issn2210-6502-
dc.identifier.otherPURE: 4168066-
dc.identifier.otherPURE UUID: f05815f2-32a6-4b8d-989e-dea264e31d87-
dc.identifier.otherScopus: 85046159910-
dc.identifier.otherWOS: 000445716200002-
dc.identifier.otherORCID: /0000-0002-8793-1451/work/131992545-
dc.identifier.otherORCID: /0000-0003-4732-3328/work/151426697-
dc.identifier.urihttp://hdl.handle.net/10362/151420-
dc.descriptionRubio-Largo, Á., Vanneschi, L., Castelli, M., & Vega-Rodríguez, M. A. (2018). Swarm intelligence for optimizing the parameters of multiple sequence aligners. Swarm and Evolutionary Computation. DOI: 10.1016/j.swevo.2018.04.003-
dc.description.abstractDifferent aligner heuristics can be found in the literature to solve the Multiple Sequence Alignment problem. These aligners rely on the parameter configuration proposed by their authors (also known as default parameter configuration), that tried to obtain good results (alignments with high accuracy and conservation) for any input set of unaligned sequences. However, the default parameter configuration is not always the best parameter configuration for every input set; namely, depending on the biological characteristics of the input set, one may be able to find a better parameter configuration that outputs a more accurate and conservative alignment. This work's main contributions include: to study the input set's biological characteristics and to then apply the best parameter configuration found depending on those characteristics. The framework uses a pre-computed file to take the best parameter configuration found for a dataset with similar biological characteristics. In order to create this file, we use a Particle Swarm Optimization (PSO) algorithm, that is, an algorithm based on swarm intelligence. To test the effectiveness of the characteristic-based framework, we employ five well-known aligners: Clustal W, DIALIGN-TX, Kalign2, MAFFT, and MUSCLE. The results of these aligners see clear improvements when using the proposed characteristic-based framework.en
dc.language.isoeng-
dc.rightsopenAccesspt_PT
dc.subjectCharacteristics-based framework-
dc.subjectEvolutionary algorithms-
dc.subjectMultiple sequence alignment-
dc.subjectSwarm intelligence-
dc.subjectComputer Science(all)-
dc.subjectMathematics(all)-
dc.subjectSDG 3 - Good Health and Well-being-
dc.titleSwarm intelligence for optimizing the parameters of multiple sequence aligners-
dc.typearticle-
degois.publication.firstPage16-
degois.publication.lastPage28-
degois.publication.titleSwarm and Evolutionary Computation-
degois.publication.volume42-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.1016/j.swevo.2018.04.003-
dc.description.versionauthorsversion-
dc.description.versionpublished-
dc.contributor.institutionNOVA Information Management School (NOVA IMS)-
dc.contributor.institutionInformation Management Research Center (MagIC) - NOVA Information Management School-
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Rubio_Vanneschi_Castelli_Vega_2018_AAM.pdf3,18 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.