Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/147111
Título: Neutrosophic C-Means Clustering with Optimal Machine Learning Enabled Skin Lesion Segmentation and Classification
Autor: Taher, Fatma
Abdelaziz, Ahmed
Palavras-chave: Feature Extraction
Image segmentation
Machine learning
Neutrosophic set
Whale optimization algorithm
Mathematics (miscellaneous)
Logic
Applied Mathematics
SDG 3 - Good Health and Well-being
Data: 2022
Resumo: Early detection and classification of skin lesions using dermoscopic images have attracted significant attention in the healthcare sector. Automated skin lesion segmentation becomes tedious owing to the presence of artifacts like hair, skin line, etc. Earlier works have developed skin lesion det ection models using clustering approaches. The advances in neutrosophic set (NS) models can be applied to derive effective clustering models for skin lesion segmentation. At the same time, artificial intelligence (AI) tools can be developed for the identification and categorization of skin cancer using dermoscopic images. This article introduces a Neutrosophic C-Means Clustering with Optimal Machine Learning Enabled Skin Lesion Segmentation and Classification (NCCOML-SKSC) model. The proposed NCCOML-SKSC model derives a NCC-based segmentation approach to segment the dermoscopic images. Besides, the AlexNet model is exploited to generate a feature vector. In the final stage, the optimal multilayer perceptron (MLP) model is utilized for the classification process in which the MLP parameters are chosen by the use of a whale optimization algorithm (WOA). A detailed experimental analysis of the NCCOML-SKSC model using a benchmark dataset is performed and the results highlighted the supremacy of the NCCOML-SKSC model over the recent approaches.
Descrição: Taher, F., & Abdelaziz, A. (2022). Neutrosophic C-Means Clustering with Optimal Machine Learning Enabled Skin Lesion Segmentation and Classification. International Journal of Neutrosophic Science, 19(1), 177-187. https://doi.org/10.54216/IJNS.190113
Peer review: yes
URI: http://hdl.handle.net/10362/147111
DOI: https://doi.org/10.54216/IJNS.190113
ISSN: 2692-6148
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Neutrosophic_C_Means_Clustering_Machine_Learning_Enabled_Skin_Lesion_Segmentation_Classification.pdf580,17 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.