Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/144030
Título: On the switch-length of two connected graphs with the same degree sequence
Autor: Fernandes, Rosário
Palavras-chave: Discrete Mathematics and Combinatorics
Data: Jun-2022
Citação: Fernandes, R. (2022). On the switch-length of two connected graphs with the same degree sequence. Australasian Journal of Combinatorics, 83(1), 87-100.
Resumo: Let G be a simple graph containing distinct vertices x, y, z, w such that the edges {x, y}, {z, w} ∈ G and {x, z}, {y, w} ∉ G. The process of deleting the edges {x, y}, {z, w} from G and adding {x, z}, {y, w} to G is referred to as a switch (or 2-switch) in G. Let G1 and G2 be two connected simple graphs with the same vertex set V such that for all v ∈ V, the degree of v in G1 is the same as in G2 . It is well known that G2 can be obtained from G1 by a sequence of switches. Moreover, there is one such sequences of switches with only connected graphs. For some classes of graphs, we study the problem of finding bounds for the minimum number of switches required for transforming G1 into G2 such that all graphs in the sequence are connected.
Peer review: yes
URI: http://hdl.handle.net/10362/144030
ISSN: 1034-4942
Aparece nas colecções:FCT: DM - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
On_the_switch.pdf141,38 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.