Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/131580
Registo completo
Campo DCValorIdioma
dc.contributor.authorMoro, Sérgio-
dc.contributor.authorRita, Paulo-
dc.date.accessioned2022-01-26T03:32:04Z-
dc.date.available2023-09-06T00:31:27Z-
dc.date.issued2022-04-01-
dc.identifier.issn1942-4787-
dc.identifier.otherPURE: 36371821-
dc.identifier.otherPURE UUID: a77c8141-04ff-48c5-8200-b6bac42c7e61-
dc.identifier.otherScopus: 85122965325-
dc.identifier.otherWOS: 000745780800001-
dc.identifier.urihttp://hdl.handle.net/10362/131580-
dc.descriptionMoro, S., & Rita, P. (2022). Data and text mining from online reviews: An automatic literature analysis. WIREs: Data Mining and Knowledge Discovery, 12(3), 1-13. [e1448]. https://doi.org/10.1002/widm.1448 ---- Funding Information: The work by Sérgio Moro was supported by the Fundação para a Ciência e Tecnologia (FCT) within the following Projects: UIDB/04466/2020 and UIDP/04466/2020. The work by Paulo Rita was supported by the Fundação para a Ciência e a Tecnologia (FCT) within the Project: UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC).-
dc.description.abstractThis paper reports on a thorough analysis of the scientific literature using data and text mining to uncover knowledge from online reviews due to their importance as user-generated content. In this context, more than 12,000 papers were extracted from publications indexed in the Scopus database within the last 15 years. Regarding the type of data, most previous studies focused on qualitative textual data to perform their analysis, with fewer looking for quantitative scores and/or characterizing reviewer profiles. In terms of application domains, information management and technology, e-commerce, and tourism stand out. It is also clear that other areas of potentially valuable applications should be addressed in future research, such as arts and education, as well as more interdisciplinary approaches, namely in the spectrum of the social sciences. This article is categorized under: Algorithmic Development > Text Mining Application Areas > Business and Industry.en
dc.format.extent13-
dc.language.isoeng-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04152%2F2020/PT-
dc.rightsopenAccesspt_PT
dc.subjectconsumer feedback-
dc.subjectdata and text mining-
dc.subjectonline reviews-
dc.subjectusers' opinions-
dc.subjectComputer Science(all)-
dc.titleData and text mining from online reviews-
dc.typereview-
degois.publication.firstPage1-
degois.publication.issue3-
degois.publication.lastPage13-
degois.publication.titleWIREs: Data Mining and Knowledge Discovery-
degois.publication.volume12-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.1002/widm.1448-
dc.description.versionauthorsversion-
dc.description.versionpublished-
dc.title.subtitleAn automatic literature analysis-
dc.contributor.institutionInformation Management Research Center (MagIC) - NOVA Information Management School-
dc.contributor.institutionNOVA Information Management School (NOVA IMS)-
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Data_text_mining_online_reviews_literature_analysis.pdf1,42 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.