Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/126470
Registo completo
Campo DCValorIdioma
dc.contributor.authorAlbuquerque, Vitória-
dc.contributor.authorAndrade, Francisco-
dc.contributor.authorFerreira, João Carlos-
dc.contributor.authorDias, Miguel Sales-
dc.contributor.authorBacao, Fernando-
dc.date.accessioned2021-10-22T03:41:10Z-
dc.date.available2021-10-22T03:41:10Z-
dc.date.issued2021-10-13-
dc.identifier.issn2518-3893-
dc.identifier.otherPURE: 29709192-
dc.identifier.otherPURE UUID: 4cd10f6a-9a29-4b1a-8120-e10e605ad0ea-
dc.identifier.othercrossref: 10.4108/eai.4-5-2021.169580-
dc.identifier.otherORCID: /0000-0002-0834-0275/work/153306412-
dc.identifier.urihttp://hdl.handle.net/10362/126470-
dc.descriptionAlbuquerque, V., Andrade, F., Ferreira, J. C., Dias, M. S., & Bacao, F. (2021). Bike-sharing mobility patterns: a data-driven analysis for the city of Lisbon. EAI Endorsed Transactions on Smart Cities, 5(16), 1-20. [169580]. https://doi.org/10.4108/eai.4-5-2021.169580-
dc.description.abstractNew technologies applied to transportation services in the city, enable the shift to sustainable transportation modes making bike-sharing systems (BSS) more popular in the urban mobility scenario. This study focuses on understanding the spatiotemporal station and trip activity patterns in the Lisbon BSS, based in 2018 data taken as the baseline, and understand trip rate changes in such system, that happened in the following years of 2019 and 2020. Furthermore, our paper aims to understand the COVID-19 pandemic impact in BSS mobility patterns. In this paper, we analyzed large datasets adopting a CRISP-DM data mining method. By studying and identifying spatiotemporal distribution of trips through stations, combined with weather factors, we looked at BSS improvements more suitable to accommodate users’ demand. Our major contribution was a new insight on how people move in the city using bikes, via a data science approach using BSS network usage data. Major findings show that most bike trips occur on weekdays, with no precipitation, and we observed a substantial growth of trip count, during the observed time frame, although cut short by the pandemic. We believe that our approach can be applied to any city with available urban mobility data.en
dc.format.extent20-
dc.language.isoeng-
dc.rightsopenAccess-
dc.subjectBike-sharing system-
dc.subjectUrban mobility patterns-
dc.subjectStatistical analysis-
dc.subjectCluster analysis-
dc.subjectSDG 9 - Industry, Innovation, and Infrastructure-
dc.subjectSDG 11 - Sustainable Cities and Communities-
dc.titleBike-sharing mobility patterns-
dc.typearticle-
degois.publication.firstPage1-
degois.publication.issue16-
degois.publication.lastPage20-
degois.publication.titleEAI Endorsed Transactions on Smart Cities-
degois.publication.volume5-
dc.peerreviewedyes-
dc.identifier.doihttps://doi.org/10.4108/eai.4-5-2021.169580-
dc.description.versionpublishersversion-
dc.description.versionpublished-
dc.title.subtitlea data-driven analysis for the city of Lisbon-
dc.contributor.institutionNOVA Information Management School (NOVA IMS)-
dc.contributor.institutionInformation Management Research Center (MagIC) - NOVA Information Management School-
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Bike_sharing_mobility_patterns_Lisboa.pdf3,68 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.