Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/121082
Título: Comparing stacking ensemble techniques to improve musculoskeletal fracture image classification
Autor: Kandel, Ibrahem
Castelli, Mauro
Popovič, Aleš
Palavras-chave: Convolutional neural networks
Deep learning
Ensemble learning
Image classification
Medical images
Stacking
Transfer learning
Radiology Nuclear Medicine and imaging
Computer Vision and Pattern Recognition
Computer Graphics and Computer-Aided Design
Electrical and Electronic Engineering
Data: 21-Jun-2021
Resumo: Bone fractures are among the main reasons for emergency room admittance and require a rapid response from doctors. Bone fractures can be severe and can lead to permanent disability if not treated correctly and rapidly. Using X-ray imaging in the emergency room to detect fractures is a challenging task that requires an experienced radiologist, a specialist who is not always available. The availability of an automatic tool for image classification can provide a second opinion for doctors operating in the emergency room and reduce the error rate in diagnosis. This study aims to increase the existing state-of-the-art convolutional neural networks’ performance by using various ensemble techniques. In this approach, different CNNs (Convolutional Neural Networks) are used to classify the images; rather than choosing the best one, a stacking ensemble provides a more reliable and robust classifier. The ensemble model outperforms the results of individual CNNs by an average of 10%.
Descrição: Kandel, I., Castelli, M., & Popovič, A. (2021). Comparing stacking ensemble techniques to improve musculoskeletal fracture image classification. Journal of Imaging, 7(6), 1-24. [100]. https://doi.org/10.3390/JIMAGING7060100
Peer review: yes
URI: http://hdl.handle.net/10362/121082
DOI: https://doi.org/10.3390/JIMAGING7060100
ISSN: 2313-433X
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Comparing_Techniques_Improve_Musculoskeletal_Fracture_Image_Classification.pdf1,14 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.