Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/119248
Título: General purpose optimization library (Gpol)
Autor: Bakurov, Illya
Buzzelli, Marco
Castelli, Mauro
Vanneschi, Leonardo
Schettini, Raimondo
Palavras-chave: Combinatorial optimization
Continuous optimization
Evolutionary computation
Inductive programming
Local search
Optimization
Supervised machine learning
Swarm intelligence
Materials Science(all)
Instrumentation
Engineering(all)
Process Chemistry and Technology
Computer Science Applications
Fluid Flow and Transfer Processes
Data: 1-Jun-2021
Resumo: Several interesting libraries for optimization have been proposed. Some focus on individual optimization algorithms, or limited sets of them, and others focus on limited sets of problems. Frequently, the implementation of one of them does not precisely follow the formal definition, and they are difficult to personalize and compare. This makes it difficult to perform comparative studies and propose novel approaches. In this paper, we propose to solve these issues with the General Purpose Optimization Library (GPOL): a flexible and efficient multipurpose optimization library that covers a wide range of stochastic iterative search algorithms, through which flexible and modular implementation can allow for solving many different problem types from the fields of continuous and combinatorial optimization and supervised machine learning problem solving. Moreover, the library supports full-batch and mini-batch learning and allows carrying out computations on a CPU or GPU. The package is distributed under an MIT license. Source code, installation instructions, demos and tutorials are publicly available in our code hosting platform (the reference is provided in the Introduction).
Descrição: Bakurov, I., Buzzelli, M., Castelli, M., Vanneschi, L., & Schettini, R. (2021). General purpose optimization library (Gpol): A flexible and efficient multi-purpose optimization library in python. Applied Sciences (Switzerland), 11(11), 1-34. [4774]. https://doi.org/10.3390/app11114774
Peer review: yes
URI: http://hdl.handle.net/10362/119248
DOI: https://doi.org/10.3390/app11114774
ISSN: 2076-3417
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
General_Purpose_Optimization_Library_GPOL_.pdf648,29 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.