Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/107263
Título: Robust partial least squares path modeling
Autor: Schamberger, Tamara
Schuberth, Florian
Henseler, Jörg
Dijkstra, Theo K.
Palavras-chave: Composites
Outliers
Robust consistent partial least squares
Robust correlation
Robust partial least squares path modeling
Analysis
Applied Mathematics
Clinical Psychology
Experimental and Cognitive Psychology
Data: 1-Jan-2020
Resumo: Outliers can seriously distort the results of statistical analyses and thus threaten the validity of structural equation models. As a remedy, this article introduces a robust variant of Partial Least Squares Path Modeling (PLS) and consistent Partial Least Squares (PLSc) called robust PLS and robust PLSc, respectively, which are robust against distortion caused by outliers. Consequently, robust PLS/PLSc allows to estimate structural models containing constructs modeled as composites and common factors even if empirical data are contaminated by outliers. A Monte Carlo simulation with various population models, sample sizes, and extents of outliers shows that robust PLS/PLSc can deal with outlier shares of up to 50 % without distorting the estimates. The simulation also shows that robust PLS/PLSc should always be preferred over its traditional counterparts if the data contain outliers. To demonstrate the relevance for empirical research, robust PLSc is applied to two empirical examples drawn from the extant literature.
Descrição: Schamberger, T., Schuberth, F., Henseler, J., & Dijkstra, T. K. (2020). Robust partial least squares path modeling. Behaviormetrika, 47(1), 307-334. https://doi.org/10.1007/s41237-019-00088-2
Peer review: yes
URI: http://hdl.handle.net/10362/107263
DOI: https://doi.org/10.1007/s41237-019-00088-2
ISSN: 0385-7417
Aparece nas colecções:NIMS: MagIC - Artigos em revista internacional com arbitragem científica (Peer-Review articles in international journals)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Robust_partial_least_squares_path_modeling.pdf2,07 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.