Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/97875
Registo completo
Campo DCValorIdioma
dc.contributor.advisorCastelli, Mauro-
dc.contributor.authorCorbisier, Leonardo Leal-
dc.date.accessioned2020-05-18T14:50:23Z-
dc.date.available2022-04-30T00:30:54Z-
dc.date.issued2020-04-30-
dc.identifier.urihttp://hdl.handle.net/10362/97875-
dc.descriptionInternship Report presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligencept_PT
dc.description.abstractThis report treats about the implementation of the Kalman filter algorithm into a product of Border Innovation ‐ ESI – which had the goal to complement the range of algorithms available in the tool. Most specifically it treats about using the referred algorithm to point out anomalous events on a very particular Big‐data scenario, which is the metadata about the data flowing in streaming through a middleware software. The focus of this report thus relies on providing reasoning about the problem which the algorithm has to deal with, and the data treatment adopted to implement the algorithm into the referred tool. It is relevant to mention that the practical implementation was done using Splunk, and therefore the technological aspects and the language of the tool were important factors that guided the algorithm implementation. The project took place during the author’s work at the company and the data used to guide the project reflects the reality the tool is built to deal with, and it is fully anonymized to preserve the company interest.pt_PT
dc.language.isoengpt_PT
dc.rightsopenAccesspt_PT
dc.subjectBig‐Datapt_PT
dc.subjectAnomaly detectionpt_PT
dc.subjectKalman filterpt_PT
dc.subjectBorder Innovationpt_PT
dc.subjectSplunkpt_PT
dc.titleAdding Kalman filter into ESI: an anomaly detection approach for middleware metadatapt_PT
dc.typemasterThesispt_PT
thesis.degree.nameMestrado em Gestão de Informação, especialização em Gestão do Conhecimento e Inteligência de Negócio (Business Intelligence)pt_PT
dc.identifier.tid202484165pt_PT
Aparece nas colecções:NIMS - Dissertações de Mestrado em Gestão da Informação (Information Management)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
TGI0310.pdf2,57 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.