Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/93717
Título: Ecological risk assessment based on land cover change: A case of Zanzibar-Tanzania, 2003-2027
Autor: Omar, Hassan Mohammed
Orientador: Cabral, Pedro da Costa Brito
Meyer, Hanna
Granell-Canut, Carlos
Palavras-chave: Ecological risk assessment
Ecosystems services
Land cover changes modelling
Landscape ecological statistics (LECOS)
Ecological risk assessment
Ecosystems services
Land cover changes modelling
Zanzibar
Data de Defesa: 28-Fev-2020
Resumo: Land use under improper land management is a major challenge in sub-Saharan Africa, and this has drastically affected ecological security. Addressing environmental impacts related to this major challenge requires faster and more efficient planning strategies that are based on measured information on land-use patterns. This study was employed to access the ecological risk index of Zanzibar using land cover change. We first employed Random Forest classifier to classify three Landsat images of Zanzibar for the year 2003, 2009 and 2018. And then the land change modeler was employed to simulate the land cover for Zanzibar City up to 2027 from land-use maps of 2009 and 2018 under business-as-usual and other two alternative scenarios (conservation and extreme scenario). Next, the ecological risk index of Zanzibar for each land cover was assessed based on the theories of landscape ecology and ecological risk model. The results show that the built-up areas and farmland of Zanzibar island have been increased constantly, while the natural grassland and forest cover were shrinking. The forest, agricultural and grassland have been highly fragmented into several small patches relative to the decrease in their patch areas. On the other hand, the ecological risk index of Zanzibar island has appeared to increase at a constant rate and if the current trend continues this index will increase by up to 8.9% in 2027. In comparing the three future scenarios the results show that the ERI for the conservation scenario will increase by only 4.6% which is at least 1.6% less compared to 6.2% of the business as usual, while the extreme scenario will provide a high increase of ERI of up to 8.9%. This study will help authorities to understand ecological processes and land use dynamics of various land cover classes, along with preventing unmanaged growth and haphazard development of informal housing and infrastructure.
Descrição: Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies
URI: http://hdl.handle.net/10362/93717
Designação: Mestrado em Tecnologias Geoespaciais
Aparece nas colecções:NIMS - MSc Dissertations Geospatial Technologies (Erasmus-Mundus)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
TGEO0229.pdf2,32 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.