Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/92164
Título: Applying text mining techniques to forecast the stock market fluctuations of large it companies with twitter data: descriptive and predictive approaches to enhance the research of stock market predictions with textual and semantic data
Autor: Zois, Christos
Orientador: Henriques, Roberto André Pereira
Castelli, Mauro
Palavras-chave: Text Mining
Data Mining
Predictive Model
Topic Modelling
Stock Market
Social Media Analysis
Binary Classification
Data de Defesa: 19-Dez-2019
Resumo: This research project applies advanced text mining techniques as a method to predict stock market fluctuations by merging published tweets and daily stock market prices for a set of American Information Technology companies. This project executes a systematical approach to investigate and further analyze, by using mainly R code, two main objectives: i) which are the descriptive criteria, patterns, and variables, which are correlated with the stock fluctuation and ii) does the single usage of tweets indicate moderate signal to predict with high accuracy the stock market fluctuations. The main supposition and expected output of the research work is to deliver findings about the twitter text significance and predictability power to indicate the importance of social media content in terms of stock market fluctuations by using descriptive and predictive data mining approaches, as natural language processing, topic modelling, sentiment analysis and binary classification with neural networks.
Descrição: Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies Management
URI: http://hdl.handle.net/10362/92164
Designação: Mestrado em Gestão de Informação, especialização em Gestão dos Sistemas e Tecnologias de Informação
Aparece nas colecções:NIMS - Dissertações de Mestrado em Gestão da Informação (Information Management)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
TGI0261.pdf4,81 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.