Please use this identifier to cite or link to this item:
Title: Microtheories for SDI - Accounting for diversity of local conceptualisations at a global level
Author: Duce, Stephanie Jane
Advisor: Llavori, Rafael Berlanga
Janowicz, Krzysztof
Kuhn, Werner
Keywords: Microtheories SDI
Semantic heterogeneity
Spatial Data
Defense Date: 4-Mar-2009
Series/Report no.: Master of Science in Geospatial Technologies;TGEO0034
Abstract: The categorization and conceptualization of geographic features is fundamental to cartography, geographic information retrieval, routing applications, spatial decision support and data sharing in general. However, there is no standard conceptualization of the world. Humans conceptualize features based on numerous factors including cultural background, knowledge, motivation and particularly space and time. Thus, geographic features are prone to multiple, context-dependent conceptualizations reflecting local conditions. This creates semantic heterogeneity and undermines interoperability. Standardization of a shared definition is often employed to overcome semantic heterogeneity. However, this approach loses important local diversity in feature conceptualizations and may result in feature definitions which are too broad or too specific. This work proposes the use of microtheories in Spatial Data Infrastructures, such as INSPIRE, to account for diversity of local conceptualizations while maintaining interoperability at a global level. It introduces a novel method of structuring microtheories based on space and time, represented by administrative boundaries, to reflect variations in feature conceptualization. A bottom-up approach, based on non-standard inference, is used to create an appropriate global-level feature definition from the local definitions. Conceptualizations of rivers, forests and estuaries throughout Europe are used to demonstrate how the approach can improve the INSPIRE data model and ease its adoption by European member states.
Description: Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Appears in Collections:NIMS - MSc Dissertations Geospatial Technologies (Erasmus-Mundus)

Files in This Item:
File Description SizeFormat 
TGEO0034.pdf9,98 MBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.