Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/6581
Título: Recommending media content based on machine learning methods
Autor: Dias, Pedro Ricardo Gomes
Orientador: Magalhães, João
Palavras-chave: Recommender systems
Collaborative filtering
Matrix factorization
Groupbased recommendations
Interactive TV
Data de Defesa: 2011
Editora: Faculdade de Ciências e Tecnologia
Resumo: Information is nowadays made available and consumed faster than ever before. This information technology generation has access to a tremendous deal of data and is left with the heavy burden of choosing what is relevant. With the increasing growth of media sources, the amount of content made available to users has become overwhelming and in need to be managed. Recommender systems emerged with the purpose of providing personalized and meaningful content recommendations based on users’ preferences and usage history. Due to their utility and commercial potential, recommender systems integrate many audiovisual content providers and represent one of their most important and valuable services. The goal of this thesis is to develop a recommender system based on matrix factorization methods, capable of providing meaningful and personalized product recommendations to individual users and groups of users, by taking into account users’ rating patterns and biased tendencies, as well as their fluctuations throughout time.
Descrição: Dissertação para obtenção do Grau de Mestre em Engenharia Informática
URI: http://hdl.handle.net/10362/6581
Aparece nas colecções:FCT: DI - Dissertações de Mestrado

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Dias_2011.pdf32,9 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.