Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/38850
Título: Towards an Architecture for Efficient Distributed Search of Multimodal Information
Autor: Mourão, André Belchior
Orientador: Magalhães, João
Palavras-chave: Multimedia retrieval
distributed indexing
rank fusion
sparse hashing
Data de Defesa: Jan-2018
Resumo: The creation of very large-scale multimedia search engines, with more than one billion images and videos, is a pressing need of digital societies where data is generated by multiple connected devices. Distributing search indexes in cloud environments is the inevitable solution to deal with the increasing scale of image and video collections. The distribution of such indexes in this setting raises multiple challenges such as the even partitioning of data space, load balancing across index nodes and the fusion of the results computed over multiple nodes. The main question behind this thesis is how to reduce and distribute the multimedia retrieval computational complexity? This thesis studies the extension of sparse hash inverted indexing to distributed settings. The main goal is to ensure that indexes are uniformly distributed across computing nodes while keeping similar documents on the same nodes. Load balancing is performed at both node and index level, to guarantee that the retrieval process is not delayed by nodes that have to inspect larger subsets of the index. Multimodal search requires the combination of the search results from individual modalities and document features. This thesis studies rank fusion techniques focused on reducing complexity by automatically selecting only the features that improve retrieval effectiveness. The achievements of this thesis span both distributed indexing and rank fusion research. Experiments across multiple datasets show that sparse hashes can be used to distribute documents and queries across index entries in a balanced and redundant manner across nodes. Rank fusion results show that is possible to reduce retrieval complexity and improve efficiency by searching only a subset of the feature indexes.
URI: http://hdl.handle.net/10362/38850
Designação: Doutor em Informática
Aparece nas colecções:FCT: DI - Teses de Doutoramento

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Mourao_2018.pdf8,66 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.