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Abstract

The creation of very large-scale multimedia search engines, with more than one billion
images and videos, is a pressing need of digital societies where data is generated by multiple
connected devices. Distributing search indexes in cloud environments is the inevitable
solution to deal with the increasing scale of image and video collections. The distribution
of such indexes in this setting raises multiple challenges such as the even partitioning of
data space, load balancing across index nodes and the fusion of the results computed over
multiple nodes. The main question behind this thesis is how to reduce and distribute the
multimedia retrieval computational complexity?

This thesis studies the extension of sparse hash inverted indexing to distributed settings.
The main goal is to ensure that indexes are uniformly distributed across computing nodes
while keeping similar documents on the same nodes. Load balancing is performed at both
node and index level, to guarantee that the retrieval process is not delayed by nodes that
have to inspect larger subsets of the index.

Multimodal search requires the combination of the search results from individual modal-
ities and document features. This thesis studies rank fusion techniques focused on reducing
complexity by automatically selecting only the features that improve retrieval effectiveness.

The achievements of this thesis span both distributed indexing and rank fusion research.
Experiments across multiple datasets show that sparse hashes can be used to distribute
documents and queries across index entries in a balanced and redundant manner across
nodes. Rank fusion results show that is possible to reduce retrieval complexity and improve
efficiency by searching only a subset of the feature indexes.

Keywords: Multimedia retrieval; distributed indexing; rank fusion; sparse hashing
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Resumo

A criação de motores de pesquisa para pesquisa em multimédia de larga escala (e.g.,
mais de mil milhões de documentos) é vital em sociedades digitais onde dados são gerados
por biliões de dispositivos ligados em rede. A distribuição de índices de pesquisa para
ambientes cloud é a solução inevitável para lidar com o aumento da escala das coleções
de imagens e vídeos. A distribuição desses índices levanta múltiplos desafios como o
balanceamento equilibrado do espaço dos dados, balanceamento de carga entre servidores e
a fusão dos resultados de pesquisa calculados em múltiplos servidores. A questão principal
desta tese é como reduzir e distribuir a complexidade computacional da pesquisa de dados
multimédia?

Esta tese estuda a extensão de técnicas de indexação invertida baseadas em reconstru-
ção esparsa para ambientes distributivos. O objetivo principal é garantir que os índices
são distribuídos uniformemente pelos servidores, mantendo documentos semelhantes nos
mesmos servidores. O balanceamento de carga é realizado ao nível do servidor e do índice
de pesquisa, de forma a que servidores com mais documentos não atrasem o processo de
pesquisa.

A pesquisa de documentos multimodais é baseada na combinação dos resultados de
pesquisa das diferentes modalidades de informação. Esta tese investiga técnicas de fusão
de listas de resultados, com um foco especial na redução da complexidade computacional
através da seleção apenas listas que melhoram os resultados de pesquisa.

Esta tese propõe contribuições nas áreas de indexação distribuída e fusão de listas
de resultados. Resultados experimentais em múltiplos conjuntos de dados mostram que
técnicas de reconstrução esparsa podem ser utilizadas para a distribuição balanceada e
redundante de documentos e pesquisas. A avaliação de técnicas de fusão de listas de
resultados mostra é possível reduzir a complexidade de pesquisa e aumentar a precisão do
sistema, através da utilização de um pequeno sub-conjunto das listas produzidas.

Palavras-chave: Pesquisa multimedia; indexação distribuída; fusão de listas de resultados;
reconstruçao esparsa
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Introduction

Multimedia documents, made of a combination of image, video, audio, and text, are taking
an ever-growing share of the data we produce. Social-media users upload hundreds of hours
of video to YouTube every minute1. Hospitals and clinics produce hundreds of gigabytes
of medical imaging exams daily [39]. Current search engines search these multimodal
documents using textual queries, and some are taking the first steps towards new types
of queries. Google Images and TinEye allow for searching images by example: they can
retrieve similar images to a query image. The biomedical domain is a prime example of the
usefulness of similarity-based multimodal search. Diagnostic Imaging exams (e.g., X-rays)
are composed of one or more images representing the examined area and a textual report
describing the exam and patient details. Figure 1.1 shows an example of a patient case
query, where text and images are complementary: the report explicitly mentions of image
regions ("mass on the upper corner") and the image provides a visual model that is difficult
to put into words. Making these documents easily discoverable can help medical doctors
in making clinical decisions on a daily basis [88].

A 43-year-old man with painless, gross 

hematuria. Abdominal CT scan revealed 

a large left renal mass with extension 

into the left renal pelvis and ureter.

Figure 1.1: Example of a "synthetic" biomedical multimodal query, created for the Image-
CLEF Medical 2013 retrieval competition. It contains an image (CT scan) and a textual
case description.

1https://www.youtube.com/yt/press/statistics.html
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CHAPTER 1. INTRODUCTION

1.1 Towards an architecture for effective multimodal search

The goal of the search engine user is to find relevant information about an information
need. Queries are representations of such information needs and documents are the unit
of information of the results returned. A collection is a set of related documents, meant to
be searched together. Documents have evolved from text to multimedia content such as
images, audio, and video or interactive and mutable content [60]. Multimodal documents
and queries are composed of a combination of content from multiple modalities (e.g., text,
images, audio and video). Examples of multimedia documents include Web pages, pictures,
videos, songs, scientific articles, among many others.

A search engine should return a set of documents that users consider relevant to answer
the queries. Relevant documents are likely to share a degree of similarity with the query.
For example, having the same terms in a query and a document is an indicator of similarity
and potential relevance. However, similar images may represent the same object while
having large differences in their pixel values; Sentences may have the same words but in a
different order. Thus, it is not feasible to search documents in their raw forms (e.g., text
as a sequence of characters, image as pixels, video as frames). To measure similarity across
documents, one must create representations that distill key document characteristics into
features that can be formally quantified and compared. For images, features represent
characteristics such as color, texture, shape, among others. An example of a simple feature
is a color histogram, which measures the frequency of colors across an image. Image
similarity can be measured by comparing the frequency of colors across images.

GIST SIFT HoG

Query

1 a (960) 1 b (128) 1 c (324)Feature

vectors
…

Term vector

1 t (>10000)

…

A 43-year-old man 

with painless, gross 

hematuria. Abdominal 

CT scan revealed a 

large left renal mass 

with extension into the 

left renal pelvis and 

ureter.

extract extract

Features

Figure 1.2: Example feature vectors for a multimodal query (text and images) and the
corresponding features.

On a search index, features are represented as real-valued feature vectors. For such
vectors, the notion of similarity and nearest neighbor can be defined according to a distance
function. A k-Nearest Neighbour (k-NN) index is a structure designed to efficiently compute
a rank list with the k most similar feature vectors (i.e., nearest neighbors according to
that distance function).
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1.1. TOWARDS AN ARCHITECTURE FOR EFFECTIVE MULTIMODAL
SEARCH

Effective multimedia similarity-based search, i.e., query-by-example, requires using
multiple types of features and techniques that increase the complexity of the search process.
Figures 1.2 and 1.3 show a set of feature vector for a multimodal (text and image) and
a video query respectively. For the text and image query, a feasible set of features are a
textual term vector and multiple image features: GIST (image texture), Scale-Invariant
Feature Transform (SIFT) (local edges and colors) and Histogram of oriented Gradients
(HoG) (edge orientations) for the image. Local features such as SIFT match images by
detecting salient key-points on high contrast regions. Each key-point is associated with
one feature vector, meaning that hundreds of feature vectors are created for each image.
Global features such as GIST can be computed for multiple segments of the image, tilled
and pyramid feature extraction. These techniques enable searching by region-of-interest,
where a user-selected image region is compared to all other areas of the images in the
index. For a video document, a feasible set of features is a set of image features extracted
from its key-frames.

Feature 

vectors

Query/

Document

process

extract

extract

extract

extract

extract

Per-frame feature vectors

Keyframes

Figure 1.3: Video document with example feature vectors for each of its key-frames

The number of feature vectors extracted from a collection of multimodal documents
can easily grow beyond the indexing capabilities of a single computing node. Consider a
health-care professional that wants to find articles which are relevant to a patient case in
the biomedical literature. The biomedical literature is composed of more than 27 million
articles2, each containing on average more than four images3, which results in a collection
of hundreds of millions of images. Key-point based features such as SIFT compare images
by matching key-points extracted across high-contrast regions across images. This process
leverages on finding hundreds of key-points and extracting the corresponding hundreds
of feature vectors for each image. This process increases the number of vectors to index
one-hundred fold, meaning that the number of vectors to index space can reach the billions
of vectors for a single feature space.

2current size is available at https://www.ncbi.nlm.nih.gov/pubmed/?term=all%5bsb
3a sample of 70,000 articles contains 300,000 images http://www.imageclef.org/2013/medical
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CHAPTER 1. INTRODUCTION

1.2 Research question and objectives

Searching on collections with over one billion vectors requires the application of index
distribution techniques. Such index should advantage of the characteristics of distributed
systems (e.g., cloud environments): parallel processing, hardware redundancy (i.e., enable
indexing documents on more than one node), and ability to deploy additional nodes on
demand. Thus the question becomes how to reduce and distribute the multimedia search
computational complexity? In this context, I pursued three research objectives that provide
partial answers to the main research question:

• Multimodal rank fusion: research rank fusion techniques that work on multiple
modalities and features with small amounts of training data;

• Efficient distribution of vertically partitioned indexes: create flexible and efficient
algorithms for the distribution of multi-feature indexes;

• Balanced load on horizontally partitioned indexes: create distribution algorithms
that can distribute very large scale indexes with load balancing guarantees at node
and index partition level.

Figure 1.4 shows how these objectives address the multimodal index distribution prob-
lem at multiple scales. On a multimodal indexing system, documents are indexed on
multiple indexes, one index per feature (A, B, C). For small collections (i.e., 1-10 million
feature vectors per index), all indexes can be stored on a single node. As collections grow
larger (i.e., 10-500 million feature vectors per index), distributing indexes across nodes (i.e.,
vertical partitioning) becomes an effective partitioning scheme. For very large scales (500+
million feature vectors), individual feature indexes become larger than the computational
resources of individual nodes, which means that individual indexes must be partitioned
across nodes (i.e., horizontal partitioning).

1.2.1 Rank fusion

Multimodal queries generate multiple rank lists, one per feature type. This thesis studies
both unsupervised and supervised rank fusion techniques for feature rank list fusion. The
goal is to compute the combination of search results that were computed over a set of
distributed feature nodes. In particular, Chapter 3 shows how to increase retrieval effec-
tiveness (e.g., give higher scores to more relevant indexes) and efficiency (e.g., do not query
indexes that have low retrieval performance) with a focus on domains with few annotated
training data (e.g., biomedical literature retrieval).

1.2.2 Distributing and partitioning multimodal indexes

Distributing a search system to multiple nodes is a challenging task, with potential per-
formance advantages, such as super-linear performance gains with better parallelization.
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1.2. RESEARCH QUESTION AND OBJECTIVES
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...
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Figure 1.4: Towards an architecture of a distributed multimodal retrieval

The distribution process can greatly influence the retrieval performance: e.g., how
to handle node or network failures, slow or inefficient communication protocols and un-
balanced load across nodes. Existing k-Nearest Neighbour retrieval systems either deal
with distribution as: (i) an extension of single node retrieval systems (e.g., distributed
M-tree [14]), overlooking the requirements of distributed systems, or (ii) by employing
frameworks such as Map-Reduce [33], which are not very effective on reactive systems
that must be ready to answer queries in real-time, as they were designed for bulk data
processing [74]. Thus, the problem becomes how to distribute a search index across nodes
effectively?

Chapter 4 describes the Multimedia Vertical Partitioning (MVP) architecture, which
deals with the distribution of documents and combination of search results over a set
of indexes distributed over multiple nodes. For very large scales (500+ million feature
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Figure 1.5: Example of an unbalanced partition distribution. The Y-axis is on a logarithmic
scale. The red line represents a perfect distribution and the blue line represents the sizes
of the created partitions, sorted from largest to smallest.

vectors), individual feature indexes become larger than the computational resources of
individual nodes. The solution is to partition index partitions across nodes (i.e., horizontal
partitioning), Figure 1.4. Chapter 5 proposes DISH, a horizontally partitioned index which
distributes documents across nodes by similarity, such that documents relevant to a query
are concentrated across few nodes [56].

1.2.3 Balancing index partitions

DISH indexes can partition very large indexes to multiple nodes while minimizing the
differences in the number of documents per nodes. Uneven partition sizes become a problem
when partitions are distributed across multiple nodes: Nodes with larger partitions take
more time answering queries on scenarios where the system is answering multiple concurrent
query streams. Figure 1.5 shows the distribution of documents across h partitions on a
GIST feature dataset. The X-axis represents index partitions the Y-axis represents the
number of documents per partition (logarithmic scale). Existing techniques generate
partition size distributions (red line) that are far from an even distribution of documents
across partitions (blue line). The partition size differences happen at both the largest (two
orders of magnitude larger than the mean partition size) and smallest partitions (three
orders of magnitude smaller than the mean partition size). Balancing partition sizes while
preserving similarity may appear contradictory: if the data on the feature space is not
uniformly distributed, how can one guarantee an even partitioning of space in both the
densely and sparsely populated regions? Chapter 6 proposes a solution to this problem
by generating similarity-based index partitions that match the distribution of documents
in the original space. These techniques improve retrieval time and optimize precision by
balancing the size of the partitions on each node, Figure 1.4, which results in a uniform
candidate list sizes for each query on each node.
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1.3. CONTRIBUTIONS

1.3 Contributions

The main contribution of this thesis is a comprehensive architecture for the distribution
of multimedia indexes. It explores and evaluates key issues with vertical and horizontal
index partitioning and the balancing of load across those two partitioning paradigms, as
displayed on Figure 1.4.

On the multimodal index partitioning literature, existing works are either tied to the
single node indexing structure [3, 79] or were not tested on scenarios with large indexes
(millions of documents) [108]. Thus, this thesis proposes a generic architecture for effective
vertical index partitioning. It enables multimodal search when combined with rank fusion
techniques, and adds little overhead to the retrieval process. These contributions are
presented on Chapter 4 and are a part of the following article:

• André Mourão and João Magalhães, Scalable multimodal search with distributed
indexing by sparse hashing, paper on the 5th ACM on International Conference on
Multimedia Retrieval (ICMR), 2015.

The previously described architecture works while the indexes for individual features
fit the memory and processing capabilities of a single node. However, when the num-
ber of documents in the index goes beyond the capabilities of a single node, distributing
the index to multiple nodes is the natural best step. Existing algorithms are focused
either on load-balancing across nodes, without regarding intra-node document similarity
or, improving similarity-base indexing algorithm, designed to work on a single node with
homogeneous access to the full index. Thus, I propose a similarity-based indexing par-
titioning approach, DISH that can be distributed to a set of nodes of varying size while
keeping the number of documents across nodes uniform: These contributions are presented
on Chapter 5 and are a part of the following article:

• André Mourão and João Magalhães, Towards Cloud Distributed Image Indexing by
Sparse Hashing, under review on the ACM Multimedia Conference (ACMMM), 2018.

DISH achieves load balancing by minimizing the standard deviation in the total number
of documents per node. However, partitions with significantly different sizes still cause
load-balancing issues: nodes will take more time inspecting larger partitions. To generate
uniformly sized partitions, my approach was the creation of a sparse hash dictionary
that penalizes index partitions that are assigned to a large number of documents: These
contributions are presented on Chapter 6 and are a part of the following articles:

• André Mourão and João Magalhães, Balanced Search Space Partitioning for Dis-
tributed Media Redundant Indexing, paper on the 7th ACM on International Confer-
ence on Multimedia Retrieval (ICMR), 2017;
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• André Mourão and João Magalhães, Balancing Search Space Partitions by Sparse
Coding for Distributed Redundant Media Indexing and Retrieval, paper in the Inter-
national Journal of Multimedia Information Retrieval (IJMIR), 2017.

Rank fusion contributions are focused on two main topics: improve unsupervised
rank fusion algorithms and how to learn to select which rank lists for fusion on domains
with limited training data. Inverse Square Ranking fusion was created to improve the
combination of search results from multiple types of features and modalities: Unsupervised
rank fusion algorithms fail when working on rank lists with large differences in retrieval
performance. Learning to Rank (LETOR) algorithms solve this problem by selecting
which rank lists to use to generate the final rank list, given large amounts of queries
with manually annotated results as training data. However, LETOR algorithms can over-
fit training data when working on domains with limited training data. In this thesis, I
propose Learning to Fuse, a supervised algorithm for the selection of rank lists for fusion on
such domains. It works by selecting a limited set of rank lists for fusion that maximizes a
selected retrieval metric for a small train data sample (less than 100 queries with annotated
relevance judgments): These contributions are presented on Chapter 3 and are a part of
the following articles:

• André Mourão, Flávio Martins and João Magalhães, Inverse square rank fusion for
multimodal search, paper at the 12th IEEE International Workshop on Content-Based
Multimedia Indexing (CBMI), 2014;

• André Mourão and João Magalhães, Low Complexity Supervised Rank Fusion mod-
els, under review to the 27th International ACM Conference on Information and
Knowledge Management (CIKM), 2018.

1.4 Organization

The remainder of this document is organized into six chapters:

Chapter 2 – Background and related work: includes an overview of background work in
nearest neighbor search and presents the related work in distributed indexing and
rank fusion research;

Chapter 3 – Learning to combine rank lists: explores supervised and unsupervised rank
fusion for the combination of results from multiple modalities. Experiments on
multiple types of data such as multimodal biomedical retrieval and federated search
show that rank fusion works well for various data types with different properties
(e.g., high and low overlap in documents between ranks);

Chapter 4 – Multimedia vertical partitioning indexes: describes the creation of an archi-
tecture for the vertical distribution of a search index to multiple nodes. It formalizes

8
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the indexing and distribution process, providing the foundations for the multimodal
search architecture, incorporating partitioning, distribution, and fusion. The eval-
uation section shows the impact of scale and feature type on the architecture’s
distribution overhead.

Chapter 5 – Sharding very large-scale multimodal indexes: shows how to partition single
feature indexes that do not fit individual node, by high dimensional over-complete,
sparse hashing. It proposes an algorithm to balance the total number of documents
per node, for unbalanced partition sizes and its impact on redundant, over-complete
indexing. Evaluation on a commercial cloud provider shows that sparse hash parti-
tioning scheme achieves good results, with low temporal performance degradation
under varying numbers of nodes, concurrent query streams and small precision loss
on node failure;

Chapter 6 – Balancing distributed index partitions: builds on top of the previous chapter
index partitioning scheme, by forcing index load balancing at partition level. It
proposes Balanced K-Singular Value Decomposition (B-KSVD), an algorithm to
design codebooks that generate data-driven, balanced partitions. The trade-off
between partition size/load balancing and retrieval performance, by providing better
retrieval performance with evenly sized partitions, when compared with existing
partitioning schemes.

Chapter 7 – Conclusions: summarizes this thesis findings and contributions, with a critical
view on the architecture limitations. It also discusses possible improvements, impact,
and challenges that arose from this work.

9
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Background and related work

The goal of this thesis is the study of computational techniques that go towards the reduc-
tion and distribution of the computational complexity of a multimedia search architecture.
Such goal spans multiple areas of research: high-dimensional indexing, rank fusion and dis-
tributed systems. This chapter details existing approaches to high-dimensional multimedia
indexing, distribution and rank fusion.

2.1 Definitions

2.1.1 Distance functions

On this thesis, we consider features that are representable as high dimensional (hundreds
of dimensions) vectors of real numbers, x = (x1, ...,xd),xi ∈ R. For k-NN retrieval, the
similarity between feature vectors (i.e., finding the nearest neighbors in the feature space)
is measured according to a distance. The lower the distance, the higher the similarity.
The most common distance function for real numbered feature vectors is the Euclidean
distance:

euclidean(p,q) = ‖p− q‖2 =
√∑d

i=0(pi− qi)2 (2.1)

where p and q are two feature vectors, each with d dimensions.
For binary vectors, the Hamming distance is the most common choice. It counts the

number of values in the feature vectors that are different:

hamming(p,q) = ‖p− q‖1 =
∑d

i=0 p ⊕ q (2.2)

where ⊕ is the exclusive OR (XOR) operator. When dealing with sparse spaces, it is useful
to define the l0 quasi-norm as the number of non-zero values in the feature vector:

l0quasi−norm(p,q) = ‖p− q‖0 =
∑d

i=0((pi− qi) , 0) (2.3)

11
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k documents (e.g., 50)

Figure 2.1: An example of a set of query feature vectors and the corresponding collection
feature vectors.

2.1.2 Exact k-nearest neighbor

Exact k-nearest neighbor search goal is to find the exact set of k feature vectors that
minimize the distance to a query feature vectors. Formally, the goal is to retrieve the
k ∈N

+ nearest feature vectors S ∈R
k,d to a query feature vector q ∈R

d from an collection
Y ∈R

n,d:

∀yi ∈ Y,∀xj ∈ S−Y,f(q,yi)≤ f(q,xj),s.t.‖s‖= k (2.4)

where f is a distance function. An alternative to restricting retrieval to the k nearest
feature vectors is to include all feature vectors that are closer to the query than a radius r:

∀yi ∈ Y,yi ∈ S if f(q,yi)< r (2.5)

Exhaustive k-NN search algorithms select candidates by comparing query feature vectors
with all the collection feature vectors in the original vector space. These techniques do
not scale effectively, as they rely on inspecting and ranking all the vectors against the
query. This process has a complexity of O(n×d), which grows linearly with both index and
feature vector size. Figure 2.1 shows an example of the set of feature vectors for a query
and document collection, and the per-feature rank lists containing the nearest neighbors.
Multimodal, multi-feature search amplifies this problem: on Figure 2.1, the search process
must be performed for all feature types, for a total complexity of O((a+ b+ c)×n). Thus,
researchers have developed alternative techniques to deliver search on large document
collections, by relaxing the requirement to retrieve the exact set of nearest neighbors (i.e.,
approximate k-nearest neighbor).

12
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2.1.3 Approximate k-nearest neighbour

Approximate k-Nearest Neighbour search (approximate k-NN) algorithms increase tempo-
ral performance by relaxing the guarantee for the retrieval of the exact k closest neighbors.
Possible solutions include the reduction in the number of feature vectors to inspect per
query or by the creation of alternative feature representations that can be compared more
efficiently.

A radius-based approximated algorithm can be defined as finding the set of c-approximate
r-near neighbors:

if ∃d(q,p1)< r,p1 ∈ Y ⇒ p2 ∈ Y,d(q,p2)< cr (2.6)

for any query q ∈R
d, a multiplier c find a feature vector p2 in an collection Y ∈R

n,d. An
approximated version of this problem returns the feature vector p2 with a probability of
1−δ, with δ ∈ [0,1]. The δ is usually a constant value closer to one than to zero. Figure 2.2
shows how these approaches select candidates in a two-dimensional feature space. k-NN
selects the k closest feature vectors to the query point, radius-based selects all the points
inside the r radius sphere and c-approximate radius-based selects candidates inside the cr
sphere with a probability of δ.

r

cr

r

k nearest neighbors r-near neighbors c-approximate randomized 
r-near neighbor

Figure 2.2: Types of k-NN search: k-nearest neighbors, radius-based and c-approximate
radius-based

2.1.4 Efficiency and effectiveness

Retrieval systems are evaluated from a result quality and temporal perspective, effectiveness
and efficiency respectively.

Effectiveness
Effectiveness can be defined as how well do results answer the user query. On k-NN

search, the relevance of a document to a query is measured according to a set metric. The
k feature vectors closer to the query (k nearest neighbors) are assumed to be relevant.
However, feature vectors are an approximated representation of the documents: documents
may be close to the query on a feature space and not be relevant to the user of the search
engine, or vice-versa. A solution is to evaluate the quality of the results using the Cranfield

13



CHAPTER 2. BACKGROUND AND RELATED WORK

model [29]: have a set of experts manually assess the relevance of results retrieved by search
engines for a representative set of queries. Retrieval effectiveness can then be measured
using those relevance assessments.

Precision is the ratio of retrieved relevant documents over the total number of documents
retrieved. Recall is the ratio of retrieved relevant documents over the total number of
relevant documents. Both these measures can be calculated at different levels of retrieved
documents (e.g., P@k means precision at the kth retrieved document). Considering C as a
set of results and R as the set of relevant results (for Information Retrieval (IR) systems,
all relevant documents; for k-NN systems the first kth neighbours), the metrics are defined
as:

P@k = |C1,...,k∩R|
k ,R@k = |C1,...,k∩R|

|R| (2.7)

These values are usually averaged (arithmetic mean) over multiple queries to get more
consistent results: average precision (avgP), average recall (avgR).

An alternative definition of recall (recall at R) is used to evaluate some k-NN systems.
It measures whether the first nearest neighbor is ranked in the top R positions of the
returned results. As with avgP and avgR it is averaged over multiple queries. This metric
is useful for matching points in 3-d spaces and other use cases where only the single closest
nearest neighbor is necessary.

Efficiency
Efficiency can be defined as how long does the system take to answer user queries

and what computational resources were used. Distributed systems research is focused
on measuring architectural-level performance such as query throughput, load distribution
quality, performance over growing number of requests, and resistance to nodes and network
failure. This section defines some temporal and system metrics:

• Query time (milliseconds): the time it takes to make a single query, from the moment
the user submits a query to the moment results are returned. This metric is usually
averaged over multiple queries.

• Throughput (queries per second): rate at which requests can be processed. This
metric measures how the system handles processing queries in parallel. It can be
either estimated or measured using at peak or average rate on a system under real
load.

2.2 Background: Search on high-dimensional dense spaces

k-NN search evolved from brute-force linear searches to sophisticated techniques that
transform the feature vectors into new representations and reduce the percentage of the
collection to inspect.

14



2.2. BACKGROUND: SEARCH ON HIGH-DIMENSIONAL DENSE
SPACES

2.2.1 Tree-based methods

Tree-based algorithms have been an active area of study for decades [28, 103, 109]. These
algorithms divide the search space by grouping similar feature vectors into sub-trees. At
query time, efficient retrieval is achieved by pruning the non-relevant sub-trees. Trees
mostly differ in their space partitioning techniques and heuristics.

The k-d tree [16] partitions the search space into two parts at every non-leaf node (h
dimensional space). At each depth level l, the search space is partitioned at the l mod h
dimension, and the point selected to partition the search space will be at the median of
the candidates. An example of a simple 2-d tree with the vectors projected on a 2-d space
is on Figure 2.3. One can see the generated vertical (A and D) and horizontal (B, C, and
E) partitions, and the tree structure that was produced.

For nearest neighbor search, the process is to move down the tree until one reaches a
leaf node, keeping the current best candidate c as the node that minimizes the distance l
to the query. After reaching the leaf node, the tree is transversed in reverse, checking if
there could be a closer "nearest neighbor" on the unexamined side trees: it is inspected if
an hyper-sphere centered on c with radius l crosses that node’s hyperplane. The process
is repeated until the root of the tree is reached. For k-NN search, the process is similar,
but a candidate list of k current best nodes is kept. This process is effective with a low
number of dimensions (≤ 100), but it degenerates into linear search efficiency for high
dimensional feature vectors. This is due to the large increase in hyperplane intersections,
which significantly increases the amount of sub-trees inspections.

The VP-Tree [109] divides the feature space into a set of circles, centered at vantage
points and with multiple radii. For each circle, all left children of the node will be inside the
circle, while all right children will be outside of the circle. The M-Tree [28] strengths are
its ability to dynamically index data on a metric space that satisfy the triangle inequality.
When a node grows over a set limit, it splits itself into several nodes that cover metric
regions with minimum overlap and volume. It allows the implementation of multiple split
policies, which can be tuned depending on application needs (e.g., the trade-off between
low indexing time and higher retrieval precision).

The complexity of tree-based algorithms is handled by pruning the search space and
will be in the order of O(logn×d). As they do not handle dimensionality reduction or trans-
formation, the effectiveness of search space partitioning is reduced when the dimensionality
of the vectors to index increases [103].

A
B

C

D

E

A

B C

D

E

Figure 2.3: kd-Tree example
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2.2.2 Hamming embeddings

An alternative to tree-based algorithms for k-NN search are hash-based techniques. These
techniques can measure similarity very quickly in the binary space using the Hamming
distance and special processor instructions. Instead of precision being limited by the
number of inspected documents, these algorithms give a probabilistic guarantee that the
retrieved k documents are the true nearest neighbors.

The seminal Locality Sensitive Hashing (LSH) algorithm [6] groups similar items into
the same buckets (similar to hash table entries) with a high probability. At query time,
only buckets with non-zero values are inspected, avoiding exhaustive linear search across
all hashes. Figure 2.4 shows an example of a space with three points and the corresponding
hash codes and hash table.

(0,0,1)

(0,1,0)

(1,1,1)

Hash codes Hash table

(0,0,1)

(1,1,0)

(0,0,0)

(0,0,1)

(0,1,0)

(1,1,0)

(1,1,1)

...

Figure 2.4: LSH space partitioning and indexing example

Consider a family F of hash functions, a threshold r and an approximation factor
c > 1. For two points p, q ∈R

h, a family F of binary hash functions h(p,q) = [0,1] ∈ F is
interesting if:

P1 = P (h(p) = h(q) |d(p,q)≤ r) < P2 = P (h(p) = h(q) |d(p,q)≥ cr) (2.8)

For k-NN, LSH families can be used to create hash tables that group similar feature
vectors into buckets. The algorithm has two parameters: code width h and number of
tables L. G is a family of h wide hash codes, obtained by the concatenation h functions
from F such that g(p) = [f1(p), ...,fk(p)]. At retrieval time, the buckets that share non-zero
entries with the query are inspected, and a set of k candidates is selected until a stopping
condition is met (i.e., distance from candidates below a threshold) or all candidates are
inspected. The complexity of LSH is approximately equal to O(h× n

logP1
logP2 ), h << d, an

Retrieval performance also benefits from using the l1 norm, which is much faster than the
l2 norm.

LSH is very sensitive to the generated partitions and data distribution. Multiple tech-
niques have been created [27, 32, 86] to improve both temporal and retrieval performance
by creating data independent hash function families that divide the space according to a
structure (i.e., grid) or document distribution.
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2.2.3 Data dependent hashing

Recent works have focused on creating hash functions [44, 47, 48, 61, 97, 104] that try
to leverage on the latent relationships in the document collection to construct alternative
representations. Spherical hashing [42] is a data-depended variant of LSH that partitions
the high-dimensional query space in hyperspheres instead of hyperplanes. Torralba et al.
[97] propose a method to learn small binary feature vectors from real-valued vector features
using Boosting [89]. Hinton [44] generate compact hash representations using an auto-
encoder based on Restricted Boltzmann machines. Binary codes generated by Spectral
Hashing [104] are calculated by thresholding a subset of Eigenvectors of the Laplacian of
the similarity graph. Grauman and Fergus [40] authored a comprehensive review of the
state-of-the-art on binary hash indexing techniques.

The approaches based on binary codes and Hamming distances make it possible to
search millions of multimedia documents in less than a second. Scalability is tackled by
working in a space where the features are much smaller than the original space feature
vectors, and the norm (Hamming distance) is much faster to compute than the original
l2 norm. The main loss in precision in these techniques is related to the quality of the
hashes.

2.2.4 Space partitioning through clustering

Clustering techniques are one of the most used space partitioning techniques, with ap-
plications on image indexing and retrieval [48, 67]. The search space is partitioned by
generating a set of centroids; vectors are assigned to the closest centroid according to a
metric (e.g., Euclidean distance). k-means, a popular clustering technique, aims at finding
the set of centroids that minimizes the sum of squares within-cluster distances. Lloyd
[63] proposed a local search solution that is still widely applied today. On the original
formulations, the initial seed centroids are selected randomly from the training data, which
may greatly increase the convergence time. k-means++ [7] is a centroid selection tech-
nique that estimates a good set of seed centroids, by analyzing the distribution of the seed
centroids and the training data distribution. Fuzzy c-means clustering/soft clustering [17]
techniques extend the assigning of documents to multiple clusters, by keeping membership
information for documents to clusters (e.g., the ratio of the distance to the centroids).
Clustering techniques such as DBSCAN [35], do not set the number of centroids as a
parameter, focusing instead on cluster density and points per cluster.

Clustering techniques are some of the best performing nearest neighbor search algo-
rithms. Jégou et al. [48] proposed the Inverted File System with the Asymmetric Distance
Computation (IVFADC), an index that divides the space into a set of Voronoi cells through
k-means based vector quantization. Document feature vectors are indexed according to
the distance to the closest centroid. The number of documents to inspect is reduced by
inspecting only documents that are assigned similar centroids. Nearest neighbors are then
estimated using the vector-to-centroid distances, Further works improve candidate distance
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Figure 2.5: Example of k-means partitioning and the corresponding Voronoi cells produced.

computation [49] and feature vector quantization [54]. Tavenard et al. [94] proposed a
technique for balancing k-means cluster size, by shifting cluster boundaries into parallel
boundaries. Their experiments showed that balanced k-means reduced the variability in the
number of candidates retrieved per query. Babenko and Lempitsky [10] created Inverted
Multi-Index (IMI), which generalizes IVFADC by using product codebooks for individual
cell construction. Babenko and Lempitsky [11] relaxed orthogonality constraints of IMI
(Non-Orthogonal IMI), to better fit data distribution. Their experiments show that such
partitioning still results in a large number of empty cells (60%-80% for IMI and 40%-50%
for NO-IMI). Figure 2.5 shows an example of the partitions produced using k-means and
of the produced Voronoi cells.

An alternative idea comes from MSIDX [96]: feature vectors’ dimensions with higher
cardinality have higher discriminative power than lower cardinality dimensions. The
algorithm multi-sorts the indexed feature vectors according to their feature cardinalities.
Indexed vectors are re-ordered with feature vectors’ higher values on the most discriminative
dimensions being most important. The querying algorithm follows the same multi-sort
principle.

2.3 Sparse hashing for efficient partitioning and retrieval

An alternative to dense binary hashes are large, sparse, real value hashes [19]. Sparse
hashing transforms dense d dimensional feature vectors into a sparse h dimensional vector,
where d << h and with s non-zero coefficients, s << d << h. In other words, compress
the initial signal into a small number of coefficients (much smaller than the original space
dimensionality) on a higher dimensional space.

Consider a vector x ∈R
h; it is called s−sparse if it has s or less non-zero values. A set

of vectors X ∈R
n,h is sparse if all its vectors are sparse:

sparse(x)⇒‖x‖0 ≤ s

sparse(X)⇒∀i= 1, · · · ,n sparse(xi)
(2.9)

The goal is to find the sparse hash x that, combined with the dictionary D minimizes
the error of reconstructing the original vector y, ‖Dx− y‖2. Equation 2.10 shows how
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Figure 2.6: Computing a sparse hash using the previously computed dictionary.

to generate a sparse hash x ∈ R
h for a vector y ∈ R

d, based on an existing dictionary
D ∈R

d×h and s is the sparsity coefficient:

arg minx‖Dx− y‖2,

subject to

‖x‖0 ≤ s,

(2.10)

Multiple techniques were developed to generate high dimensional sparse hashes. These
techniques differ on the type of regulation applied to the hashes: l0 penalty (e.g. Orthogo-
nal Matching Pursuit (OMP) [84]), l1 penalty (e.g. Lasso [93]), l2 penalty with coefficient
thresholding (e.g. Ridge [45]) or a combination of the l1 and l2 penalties (e.g. Elastic-
net [111]). OMP controls sparsity by greedily selecting the most correlated coefficient
at each iteration with the current residual (l0 pseudo-norm penalty). Lasso does sparse
selection by applying the l1 penalty, Elasticnet’s penalty is a mixture of l1 penalties with
l2 penalties, having both the sparsity properties of l1 penalty and the limited coefficient
magnitude of the l2 penalty.

OMP [84] solves the l0 regression, by selecting the most correlated atom with the
residual vector ( the difference between the vectors Y and their reconstructions DX) at
each iteration. It chooses the atom that better minimizes the reconstruction error of the
hash computed in the previous iteration; computed coefficients may not change on the
following iterations. OMP’s greediness is tied with the retrieval process, where candidate
selection starts at the partition with the highest reconstruction coefficient. Figure 2.6
illustrates this process.

2.3.1 Creating dictionaries for the generation of sparse hashes

The generation of sparse hashes requires a dictionary which transforms vectors from the
dense real space into the sparse space. Figure 2.7 shows the generation of such dictionary
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Figure 2.7: Creating a data-driven dictionary for sparse hash generation.

using an iterative algorithm. The goal is to find the directions that better represent a
collection of d-dimensional points. Each colored vector represents a direction; the red vector
is the most important direction, the yellow vector is the second most important directions.
The remaining directions were iteratively computed in decreasing order of importance.
Computing the dictionary requires solving the following optimization problem: find the
dictionary D and set of sparse hashes X that minimizes the reconstruction error against
a set of vectors Y :

arg minD,X‖DX −Y ‖2,

subject to

‖x‖0 ≤ s,

for x ∈X

(2.11)

where Y ∈ R
d×n are the original document vectors (one per column), D ∈ R

d×h is a
dictionary, learned from the data, X ∈R

h×n are the sparse hashes and x is a sparse hash
vector (row of X).

Solving for both D and X is NP-hard. Dictionary computation algorithms such as
K-Singular Value Decomposition (KSVD), estimate the dictionary atoms (i.e., D column
vectors) that minimize the reconstruction error. KSVD [2] offers an approximate solution to
this problem, by iteratively alternating between (1) sparse coding of the training examples
using the current dictionary and (2) updating the dictionary atoms to fit training data
better. Stochastic gradient descent techniques (e.g., [83]) update each example per iteration,
to minimize reconstruction error. Cherian et al. [26] presented an index based on hashes
created using l1 regression and the Newton Descent for codebook learning. Borges et al.
[19] presented an index based on sparse hashes created using l0 regression and a codebook
learned through KSVD.

2.3.2 Inverted indexes for distributed indexing and retrieval

Inverted index structures are a widely studied for indexing and retrieval on a single machine,
being an essential part of the IR curriculum [22, 68]. Most of the literature is focused
on indexing text on inverted index structures. On classical text indexing systems, each
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document is represented by the set of words that are on it. A possible visualization of
multiple documents with multiple words is a matrix, where the rows are all the words in
all documents and the columns are the documents. Each entry of the matrix is the number
of times a word appears on a document, The set of words on all index documents is called
the dictionary. This matrix is highly sparse, and not adequate for processing at scale.
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Figure 2.8: Indexing text using posting lists

A solution is to store only the non-zero entries on an inverted index, where each index
entry corresponds to a word and contains a list of all documents which contain that term
(posting list). At query time, the postings lists that correspond to the query terms are
inspected. Figure 2.8 shows a simple example using biomedical terms. A textual document
is decomposed into a set of term vectors. These term vectors are then indexed on the
posting lists that match the terms that appear in the document.

Consider now a real-valued feature vector: each feature corresponds to a word, meaning
that documents and feature vectors can be represented as a matrix. The key difference
is that regular feature vectors are dense, meaning that representing the feature vector
matrix as a set of posting lists will not be effective. If the hashes are sparse, one can create
inverted indexes with similar structure and proprieties.

2.3.3 Discussion

This section described existing solutions to the k-NN retrieval problem that can achieve
good retrieval effectiveness by inspecting a small subset of the indexed feature vectors,
However, these techniques assume that the index fits a single node and that the time
it takes to access indexed feature vectors is uniform (i.e., all feature vectors are in the
main memory (RAM)). For example, the NO-IMI algorithm Babenko and Lempitsky [11]
generated a large number of empty partitions even after relaxing orthogonality constraints.
Such unbalances become a problem if the indexing process is performed in situations where
the access to resources is not uniform (e.g., the index is distributed across multiple nodes).
The following sections detail how existing works deal with the distribution of the index to
multiple nodes.
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2.4 Scaling out indexing and retrieval

The algorithms described in the previous section assume that all the data is in the main
memory (RAM). However, RAM is limited to the hundreds of GB per node, which is not
enough to deal with multimodal documents with dozens of features. Thus, one must find
techniques to enable search at these scales effectively.

2.4.1 Scaling indexes to disk

The first place to store indexes that do not fit into memory is the secondary memory
(e.g., hard drive or solid state drive). This problem has been studied in areas as varied as
database systems, text indexing, with few examples in multimedia retrieval [15, 41, 59].

The M-Tree variants (LHI-Tree [41] and PM-Tree [92]) reduce vector dimensionality
by indexing vectors according to their distances to randomly selected pivot vectors. The
LHI-Tree applies a hashing function to the vectors in the new dimensional space, and store
points with nearby hashes to the same disk region to increase the probability of finding
nearest neighbors in the same disk read. The NV-Tree [59] re-projects feature vectors
into an uni-dimensional space so that nearest neighbors are likely stored in that disk area,
minimizing disk access. The LSH Forest [15] is based on the LSH algorithm with variable
width codes, stored in prefix B-Trees. Their disk-based representation transverses the codes
through their prefixes (stored nearby on disk) to find candidates and then re-rank them
on the original space. The solutions on the literature rely on re-projections, clustering or
hashing to store likely nearest neighbors to the same disk region. Also, increasing index size
limit without an increasing parallelization leads to disk I/O becoming a disproportionate
portion of retrieval time.

2.4.2 Distributed indexing and retrieval

As data reaches the processing limits of a single processing node, scaling out indexes across
multiple nodes becomes the inevitable next step. Multimodal multi-feature indexes pose
a challenge to feature-to-node allocation policies: how to distribute indexed feature vectors
across nodes?

There are two main index partitioning techniques to divide an index across m nodes
effectively [22]:

• divide features across multiple nodes (horizontal partition or sharding);

• divide feature vector dimensions across multiple nodes (vertical partition).

Figures 2.9 and 2.10 give a visual representation of such partition techniques. In sharding,
there are two main approaches to distribute feature vectors across shards:

• a two-tier search process - searching a small index with a subset documents from all
shards and select shards with the most results on the subset [12];
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• select shards probabilistically by comparing individual shard document statistics
with the query statistics [4].
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Figure 2.9: Vertical index partitioning
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Figure 2.10: Horizontal index partitioning

2.4.3 Distributed text indexing

Distributed text indexes offer retrieval precision comparable to a full index inspection
by querying a small subset of the full set of indexing nodes [56]. Kulkarni and Callan
[56] compared three document sharding policies: random, source (URL-based) and topic
(content-based clustering), over large textual document datasets (500 million documents
with 381 billion words). They showed that Topic-based sharding offers the retrieval preci-
sion in line with exhaustive search while inspecting only 20% of the document collection.
Dai et al. [31] builds on top of this work by using query logs as the seeds for the cluster cen-
troid creation. Topic-based sharding closely matches sparse hash partitioning: extracting
principal dimensions of the data is similar to topic-creation on text indexes. Their experi-
ments show that vertical sharding offers the best temporal performance in a distributed
setting, without an increase in load imbalance.

23



CHAPTER 2. BACKGROUND AND RELATED WORK

The bulk of work in distributed text indexes (sparse, very high dimensional term vec-
tors) contrasts with the equivalent work done in the multimedia domain (dense document
feature vectors). Multimedia document distribution is a less explored area, where docu-
ment allocation policies are either random or based on existing partitions of single node
algorithms. This is particularly challenging due to the data high-dimensionality and its
unknown underlying structure.

Vertical partitioning can work at two levels for systems with multiple indexes: distribute
indexes across nodes or partition individual feature vector dimensions across nodes. As
textual feature vectors are sparse, they can be easily partitioned per term (partitioning
dimensions across nodes): index documents in partitions with non zero values. For dense
feature vectors, there is no simple technique to apply vertical partitioning in their original
form.

2.4.4 Distributed multimedia indexing

The distribution problem is an interesting area of study that must balance between two
factors: how to design a system that provides a good distribution of documents and queries
across machines while giving locality guarantees (vectors on the same machine have some
degree of similarity) for efficient retrieval?.

One of the works that address the efficient distribution of a media index is by Ji et al.
[50]. They designed a distributed near-duplicate image retrieval architecture and tested
multiple horizontal and vertical sharding indexing techniques, based on Vocabulary Tree
model quantization.
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Figure 2.11: Sub-tree based sharding

Batko et al. [14] describe a large scale (50 million images from Flickr) distributed
content based image retrieval (CBIR) system capable of sub-second querying time. Their
system includes distributed crawling, feature extraction, and retrieval. Local node indexing
is based on an enhanced M-tree [92] and data distribution between nodes is based on an M-
Chord [81] peer-to-peer search network. Their distribution architecture is intertwined with
the intra-node indexing algorithm, making it hard to generalize for alternative indexers.

Aly et al. [3] describe a distributed kd-tree algorithm that distributes sub-trees across
multiple nodes, Figure 2.11 Their benchmarks show that their approach leads to better
results than creating independent kd-trees on all the machines, their results show very
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high single query time (about eight seconds) on an index with million documents. The
effectiveness of sub-tree based index partitioning is reduced when the dimensionality of
the vectors to index increases [103], meaning that more nodes have to be queried.

Lee [57] offer a full distributed image search engine with manual relevance feedback. The
indexing algorithm is based on clustering using self-organizing tree maps and distributing
the clusters across machines, Figure 2.12 The paper mentions efficiency information by
mapping precision vs. number of clusters inspected.
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Figure 2.12: Cluster-based sharding

The MapReduce model [33] is widely deployed to process large amounts of data on a
machine cluster. It is divided into a Map procedure, which is the processing function to
apply to data and a Reduce procedure that aggregates the results from the Map procedure.
Parallel data processing is achieved by running Map and Reduce on multiple machines in
parallel with disjoint data partitions, Figure 2.13 Data distribution and communication
are managed by the MapReduce framework.

Yang et al. [108] present a small scale image search engine, with distributed feature
extraction and search on a distributed inverted index. The authors report experiments
with increasing number of nodes (1, 2, 4) and 2000 feature vectors, and show that time
spent on the feature extraction decreases linearly with the increase in nodes, while search
time decreases sub-linearly.

Moise et al. [74] tested hierarchical cluster partitioning using Map-Reduce on a 100
million image index. Experiments show that the overhead behind the Map and Reduce
operations is considerable (e.g., copying data to Hadoop Distributed File Systems), as it
is only optimized for massive batches of queries.

Muja and Lowe [79] recently tested several approximated nearest neighbor search
algorithms on a distributed setting with four nodes and 80 million feature vectors. Their
approach is based on disjoint data partitioning and a map-reduce operation where all
indexes are searched and their results combined by a master node. Mohamed andMarchand-
Maillet [73] improved Map-Reduce for media retrieval by executing the Map and Reduce
stages in parallel using the Message Passing Interface (MPI) protocol. They show that,
although it improves performance versus regular Map-Reduce, it is still worse than a
manual MPI-based implementation. As Map Reduce requires Map and Reduce nodes to
be data agnostic, indexes must either query all nodes for all queries (e.g. [79]), which does
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not meet our efficiency goal, or have all nodes have access to the full index ( [74]), which
is limited by the time the node takes to fetch the relevant index subset.
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Figure 2.13: Map-Reduce based sharding

As Map Reduce requires Map and Reduce nodes to be data agnostic, indexes must
either:

• query all nodes for all queries [79], which reduces efficiency, or

• have all nodes accessing the full index [74], which is limited by the time it takes to
fetch the relevant index subset.

As Map-Reduce was designed for batch data processing, it is optimized for working with
massive batches of queries at a time, instead of individual queries.

2.4.5 Consistent hashing for load balancing

Assigning documents and requests to nodes in a consistent manner (i.e., the same re-
quest will always be assigned the same node) is an area of study on distributed systems
research [55, 95]. Consistent hashing [55] and Rendezvous hashing [95] are consistent
distribution techniques for distributed systems, designed to improve cache hit rate by
mapping similar requests to the same node while keeping the load balanced across nodes.
Both algorithms are based on assigning both documents and nodes to an uni-dimensional
space, where documents are assigned to the closest nodes. Consistent hashing is based on
mapping the distribution space into a numeric angle value. Nodes are assigned multiple
pseudo-random angle values. Documents are assigned to nodes by computing the angle
value from a hash and selecting the node with the closest angle value. Rendezvous or
Highest Random Weight hashing is based on generating node indexing priorities based
on hashing the concatenation of the document and the node identifiers. Recently, Mir-
rokni et al. [72] developed Consistent hashing with bounded load, that improves load
distribution by capping the maximum number of documents per node. Documents that
would have been assigned to that shard are forwarded to the next node with available
capacity. Although it improves load balancing compared to regular, consistent hashing,
it still designed for exact matches. These techniques were designed for load balancing on
static content nodes or caches; similarity is measured by cryptographic hash functions (e.g.,
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SHA256, MD5) designed for exact hash matches and to explicitly produce very different
hashes for near-duplicate or similar documents.

2.4.6 Commercial and open-source solutions

Outside academia, web search and social media companies are the key players for dis-
tributed processing of large amounts of media documents with strict time constraints.
Pinterest researchers [52] revealed the architecture behind their image recommendation
system (related pins), that recommends images that are related to user posts, and Similar
Looks, that recommends clothing articles from online stores that look like to the ones on
an image. Image feature vectors are extracted using the Caffe deep learning framework,
salient color signatures and local features for object detection which are called Incremental
Fingerprints. The image collection is divided into epochs by upload date and feature type.
Indexes and features are sharded by image signature (MD5 hash of the fingerprint) and
assigned to machines in the cluster using Hadoop. The system uses two indexes: a disk-
based partially memory cached for the fingerprints for candidate selection and an image
annotation and user information graph for re-ranking Static Performance evaluation is only
reported as the performance on a single machine, and the Live Performance evaluation
was based on user engagement (number of pins) instead of time and precision.

Existing open-source and commercial projects such as Apache SOLR1, Elastic Search2

or Sphinx3 offer a fully featured search platforms for text. These platforms offer tools to
set a schema for the index, choose which algorithms and features to use for processing and
offer REST APIs that enable easy website integration.

SOLR and Elasticsearch offer index distribution through horizontal sharding using
Apache Lucene4 as the backend for text indexing and retrieval. LIRE (Lucene Image
Retrieval) [64] is a library based on Lucene that enables indexing image feature vectors as
postings lists.

2.4.7 Discussion

Efficient nearest neighbor search requires effective, similarity-based search space partition-
ing techniques. k-NN search architectures should take advantage of the characteristics of
new distributed systems. The current state-of-the-art [73, 74, 79, 108] builds on adaptations
of existing generic distributed platforms to handle the problem of efficient multimedia index
distribution. Sparse hashing techniques have the potential to create better similarity-based
index partitions due to their similarities to existing solutions developed for distributed
textual indexes [31, 56].

1https://lucene.apache.org/solr/
2https://www.elastic.co/
3http://sphinxsearch.com/
4https://lucene.apache.org/
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2.5 Rank fusion for multimodal retrieval

Multimedia features provide an approximation to what humans consider relevant in multi-
modal documents. In images, features can represent colors, edges, texture, among other
information. For text, features may represent the words or abstractions in the form of
topics. As we are dealing with an approximation of the world, there is no canonical order
in which to combine the results for individual indexes. Rank fusion algorithms bridge
the gap between the different types of similarities measured by each feature. The goal is
to combine the set of rank lists into a rank list that adequately models similarity across
features. For example, documents that are highly ranked across feature rank lists should
be ranked higher on the final rank. Rank fusion techniques follow the effects described
by Vogt and Cottrell [102] when ranking documents:

• The Skimming Effect: different retrieval approaches retrieve different relevant items

• The Chorus Effect: relevant items will be present on the ranks of several retrieval
approaches;

• The Dark Horse Effect: retrieval approaches may rank a particular document unusu-
ally more (or less) accurately than average for a query.

Figure 2.14 gives an overview of the search process: (i) Documents in the rank lists
are grouped by a unique identifier, id. (ii) The score of the document in the final ranking
is computed as a function of its score and ranking across rank lists.

Ranking Score Id
1            1         a
2            0.93    b
3            0.90    c
4            0.90    d

5            0.73    e
Ranking Score Id
1            1         a
2            0.91    f
3            0.76    e
4            0.74    c

5            0.73    d

Doc Id (Score, Ranking, System) list
a [ (1,1,A), (1,1,B), (0.85,3,C) ]
b   [ (0.93,2,A), (0.78,4,C) ]
(…)
j   [ (0.5,6,C) ]

(i) fuse

(ii) rank

System A

rank list

System B

rank list

System C

rank list

Ranking Score Id
1            1         c
2            0.91    f
3            0.85    a
4            0.78    b

         (…)

Ranking Score Id
1            8.55    a
2            3.42    b
3            0.50    j
4            0.32    f

         (…)

Figure 2.14: The rank fusion process

2.5.1 Score-based rank fusion

Shaw and Fox [90] introduced score based fusion (CombSUM, CombMAX, CombMNZ and
other variants). Score-based approaches are based on the scores returned by the retrieval
systems. The best performing approaches are CombSUM, CombMAX, and CombMNZ.
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For each document i, the score after fusion can be computed as:

CombSUM(i) =
nrl(i)∑
k=1

Sk(i), (2.12)

CombMAX(i) = max(S),∀S ⊂Di, (2.13)

CombMNZ(i) = nrl(i)×CombSUM(i), (2.14)

where Sk(i) is the score of the i document on the rank list k. nrl(i) is the number
of rank lists document i appears. nrl(i) varies between 0 (the document i does not
appear on any rank) and the total number of ranks (the document i appears on all
ranks). D(i) are the ranks that contain the document i. These approaches are widely
researched and evaluated [58, 75]; however, they have a key limitation: rank lists must
give meaningful scores to documents. Score distribution and normalization dramatically
influence performance [75]; effective fusion can only be achieved if scores follow similar
distributions across rank lists. Figure 2.15 shows an example of the application of score-
based rank fusion techniques on a set of three rank lists (as produced by SIFT, GIST and
HoG features). The leftmost table contains the score of each document for each feature
type (the higher, the better). The rightmost table contains the score of the combination
of the rank lists using multiple score-based techniques.
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Figure 2.15: Score based rank-fusion examples

2.5.2 Rank-based rank fusion

Rank-based methods use the position of documents in rank lists as scores. They remove
the need for scores, which enables the combination of rank lists from more sources (e.g.,
from commercial web search engines).

Voting algorithms are based on election theory. Documents are candidates, and each
rank list is a voter. The presence of documents in a rank list counts as a vote. Popular
approaches include Bordafuse [9] and Condorcet Fuse [76], based on Condorcet voting.

Bordafuse is a voting algorithm based on the positions of the candidates. It was
invented by Jean-Charles de Borda in the eighteen century and adapted for rank fusion
by Aslam and Montague [9] For each rank list, the document gets a score corresponding to
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its (inverse) position on the rank. The fused rank list is based on the sum of all per-rank
scores.

Condorcet is a voting algorithm introduced by Marquis de Condorcet in the eighteen
century and also adapted by Montague and Aslam [76] for rank fusion. It is based on
a majoritarian method which uses pairwise comparisons for ranking. Consider a set of
documents D and a set of rank lists R. For each pair of documents di,dj ∈ D, the
algorithm compare the number of times di ranks above dj over all rank lists R. Candidates
are then sorted in descending order according to the number of times they rank above
other documents minus the times they rank below other documents. Figure 2.16 shows
an example of the application of Condorcet. The leftmost table contains the pairwise
comparisons between all documents as (wins, ties, losses) triples. The rightmost table
contains the combined score of all pairwise comparisons and the final rank.

SIFT: d2 > d1

GIST: d1 > d2

HoG: d1 > d2

d1 vs. d2

Win Draw Lose
2 0 1

Win Tie Lose Score

d4 10 0 2 8

d5 9 0 3 6

d3 4 0 8 -4

d1 4 0 8 -4

d2 4 0 8 -4

Pairwise comparison Pairwise ranking

d1 d2 d3 d4 d5

d1 - 2,0,1 1,0,2 0,0,3 1,0,2

d2 1,0,2 - 1,0,2 0,0,3 2,0,1

d3 2,0,1 2,0,1 - 0,0,3 0,0,3

d4 3,0,0 3,0,0 3,0,0 - 1,0,2

d5 2,0,1 2,0,1 3,0,0 2,0,1 -

Figure 2.16: Condorcet pairwise comparisons and ranking

Rank and Voting-based approaches do not require normalization and are more stable
to differences in rankings between lists.

RR(i) =
nrl(i)∑
k=1

1
Rk(i) , (2.15)

RRF(i) =
nrl(i)∑
k=1

1
h+Rk(i) , withh= 60. (2.16)

where Rk(i) is the rank of document i on the k rank.
Figure 2.17 shows an example of the application of rank, and voting-based rank fusion

techniques on a set of three rank lists (as produced by SIFT, GIST and HoG features)
(similar to Figure 2.15). The leftmost table contains the rank of each document for each
feature type (the higher, the better). The rightmost table contains the score of the
combination of the rank lists using multiple rank-based techniques.

Rank based tend to outperform score based approaches [30, 46] and, in some cases,
learning to rank methods [30, 66]. They can also be deployed on use-cases where the score
is not available.
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Figure 2.17: Rank and voting based rank-fusion examples

2.5.3 Supervised techniques

The linear combination (LC) approach [13, 101], also called wCombSUM, assigns linear
weights to rank lists,

LC(i) =
∑nrl(i)

k=1
αiSk(i), (2.17)

where αi is a linear weight given to the rank list i. Linear weighting can be similarly
applied to other score or rank based fusion algorithms. Other recent works have worked
with other more data-driven schemes to find adequate weights and how to apply them [62,
69].

Anava et al. [5] describe a probabilistic fusion framework which generalizes existing
rank and score-based fusion methods and enables the weighted combination of method
components. For example, GeoCMNZ is a weighted combination of the frequency and
score components of CombMNZ. Weights are estimated by "leave-one-out" cross-validation.
Their experiments show that GeoCMNZ can outperform CombMNZ, depending on the
metric and queries under optimization. Bhowmik and Ghosh [18] extend unsupervised
methods, incorporating document features (common on LETOR techniques) into ranking
using generalized linear models.

2.5.4 Learning to rank

LETOR techniques use machine learning to learn ranking models, using queries with
curated rank lists (assessed by experts) as training data. They can be divided into three
main families [24]:

• Pointwise: optimize each document-query point loss function at once: Coordinate
Ascent [70], Random Forests [20],

• Pairwise: optimize document pairs loss function at once: RankNet [21], Rank-
Boost [37], MART [38], LambdaMART [105], SVM-rank [53],

• Listwise: optimize full ranks/features loss function at once: AdaRank [107], List-
Net [23], ListMLE [106].
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Training effective LETORmodels require vast amounts of training data (e.g., the MSLR-
WEB30k dataset has over 30,000 queries with relevance judgments [85]). Vargas-Munoz
et al. [100] select rank lists and fusion methods using genetic programming techniques,
achieving good retrieval performance with lower training time than other supervised ap-
proaches. These techniques are based on machine learning techniques, which require vast
amounts of training data to generate models with high degrees of complexity. For example,
there are cases where decision tree models can generate trees seventeen levels deep [8].
Such model complexities are tied to the large amounts of training data. For example, the
widely popular LETOR dataset [71] (v4) contains over 25 million web pages and two query
sets from Million Query track of TREC 2007 (1700 queries with relevance assessments)
and TREC 2008 (800 queries with relevance assessments). The MSLR-WEB30k dataset
has over 30,000 queries with relevance assessments.

2.5.5 Discussion

Existing research on rank fusion and LETOR can outperform the best results from indi-
vidual features [30, 85, 100]. However, both rank fusion and LETOR techniques impose
no constraints on the number of rank lists used, resulting in more nodes queried on a
vertically partitioned index. Using fewer rank lists can reduce the complexity, by reducing
the number of features that are needed to compute the final search results.

2.6 Datasets

A multimodal search engine architecture is composed of multiple components, meaning
that there is no single dataset that addresses all the processes we want to benchmark at
the desired scales. Table 2.1 contains an overview of the datasets used throughout this
thesis.

2.6.1 TREC CDS and PMC Open Access

The TREC CDS dataset5 is the Open Access Subset of PubMed Central (PMC). PMC is
a database of open access full-text biomedical articles. It contains over 1.25 million articles.
The queries are medical case summaries created from actual medical records. They describe
the patient medical history, symptoms, tests, diagnosis, and the care process. The queries
are from one of 3 types:

• Diagnosis: What is the patient diagnosis?

• Test: What tests should the patient receive?

• Treatment: How should the patient be treated?

5https://trec-cds.appspot.com/
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Table 2.1: Datasets for indexing, retrieval and fusion

Dataset Type Train
& val Test index Queries

PMC Open Access Articles
(text & image) — 5,000,000 articles

15,000,000 images —

TREC CDS Articles
(text & image) — 1,250,000 articles

5,000,000 images 90

ImageCLEF 2013
Medical Cases

Articles
(text & image) — 75,000 articles

300,000 images 36

ImageCLEF 2013
Medical Ad-hoc

Article Images
(text captions & image) — 300,000 images

& captions 35

Tiny Image Features
(GIST) — 79,302,017 —

ANN_1M SIFT Features
(SIFT) 500,000 1,000,000 1,000

ANN_1M GIST Features
(GIST) 100,000 1,000,000 10,000

ANN_1B SIFT Features
(SIFT) 100,000,000 1,000,000,000 10,000

TREC FedWeb Ranked
doc. lists — 148 ranks

1,000 docs each 200

There is a set of 30 queries (10 for each type) for each edition of the track, for a total
of 90 queries (2014 to 2016). Relevance judgments have 3-levels: "definitely relevant"
for answering questions of the specified type about the given case report, "definitely
not relevant", or "potentially relevant" if it may be relevant in from a literature review
perspective.

The PMC Open Access is a superset of the TREC CDS dataset that is updated daily
with new documents. As of January 2017, it contains over 4.7 million documents with over
15 million images.

2.6.2 ImageCLEF 2013 Medical

The ImageCLEF 2013 Medical dataset [43] is a subset of PMC with 75,000 journal articles
and over 300,000 images. There are a total of 66 queries from 2011, 2012 and 2013 editions
of the track. Relevance judgments are binary: Relevant (rel = 1) or Not relevant (rel = 0).
The ImageCLEF 2013 Ad-hoc Medical image retrieval is a similar task, with the results
are the images with captions from the articles.
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2.6.3 Tiny Images

The Tiny Images dataset [98], contains 79,302,017 images and the corresponding GIST
feature vectors [82] with 384 dimensions. This makes the dataset particularly adequate to
simulate the conditions of a large-scale high-dimensional search.

2.6.4 ANN dataset

The ANN datasets [48, 49], were designed to evaluate the quality of nearest neighbors
search algorithm with different feature vector and database sizes6. It is composed of two
main vector sets:

• two sets of one million feature vector sets (GIST with 960 dimensions and SIFT with
128 dimensions), and corresponding training, validation and queries vector subsets
[48];

• one set of one billion 128 dimensional SIFT feature vector sets and corresponding
training, validation and queries vector subsets [49].

2.6.5 TREC FedWeb 2013

The TREC FedWeb 2013 dataset is an extension to the 2012 TREC FedWeb dataset [80].
It contains a collection of search results sampled from 148 search engines over 200 queries.
Each search engine is related to one or more search categories, such as web, news, travel,
and video. Relevance judgments span 5 categories: Navigational (rel = 1), Key (rel = 1),
Highly relevant (rel = 0.5), relevant (rel = 0.25) and Not relevant (rel = 0).

2.7 Summary

The challenges for retrieval systems that deal with large amounts of heterogeneous data
are far from over. This section described how existing literature on multimodal indexing,
index distribution and result fusion, and areas where this thesis research can provide
additional insights (e.g., distribute a multimodal index to multiple nodes by similarity).
Sparse hashing techniques have the potential to create index partitions that can be the
basis of a similarity-based distributed index. For rank fusion, designing a fusion algorithm
that uses only a subset of features can improve the efficiency of a vertically partitioned
index.

6http://corpus-texmex.irisa.fr/
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Learning to combine rank lists

Multimodal retrieval architectures are built on top of multiple features and ranking methods
to produce the final ordered list of documents, rank list. However, using multiple features
and method for retrieval produces multiple rank lists, with variable levels of retrieval
performance. When working on new retrieval tasks and data with no annotated training
or test data, it is not possible to know what rank lists offer the best retrieval performance.

Table 3.1 shows an example of the retrieval performance of such lists for the TREC
CDS dataset: there is no single method that is the best for all metrics and datasets. The
goal of rank fusion algorithms is to create a single, unified rank list that leverages on rank
lists produced using multiple features and retrieval methods.

Section 2.5 described how rank fusion techniques follow the Skimming, Chorus and
Dark Horse Effects Vogt and Cottrell [102]. For example, Reciprocal Rank (RR) [110] and
Reciprocal Rank Fusion (RRF) [30] give scores to documents by summing the inverse of
the document ranking in the individual rank lists, Skimming Effect (retrieve top-ranked
documents for each retrieval approach). The Chorus effect is visible in CombMNZ [90];
the final sum of document score is multiplied by the number of rank lists where a doc-
ument appears, nrl. However, existing works [5, 18, 30, 110] only evaluate the retrieval
effectiveness of the final combined rank list. They do not provide a solid hypothesis on
why they can model document relevance across rank lists (i.e., the correlation between the
position of a document in the rank list and the document relevance). This chapter studies
how existing rank fusion techniques fit real-world data and how existing techniques can
be improved by better exploiting how these techniques model real-world datasets.

Unsupervised rank fusion algorithm’s performance degrades when working on rank
lists with large differences in retrieval performance. LETOR algorithms solve this problem
by selecting which rank lists to use to generate the final rank list, given large amounts
of queries with manually annotated results as training data. However, adding more rank
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Table 3.1: Retrieval performance of a subset of the rank lists produced using various ranking
functions (BM25L, BM25+, Language Models (LM) and TF_IDF, (D)) on multiple
combinations of fields (full text, abstract and title) query expansion (MeSH, SNOmed,
Shingles and Pseudo-relevance feedback, PRF) for the TREC CDS dataset.

TREC CDS 14 TREC CDS 15
Rank lists NDCG@20 P@10 NDCG@20 P@10

BM25+_f_MSH_NoPRF 0.2240 0.2700 0.2362 0.3333
BM25+_f_MSH_PRF 0.2771 0.3767 0.2573 0.3667
BM25+_f_NoEXP_NoPRF 0.2350 0.2900 0.2461 0.3367
BM25+_f_SHI_NoPRF 0.2273 0.2833 0.2376 0.3200
BM25+_f_SHI_PRF 0.2768 0.3767 0.2527 0.3400
BM25+_f_SNO_NoPRF 0.2265 0.2833 0.2270 0.3467
BM25+_f_SNO_PRF 0.2558 0.3300 0.2329 0.3400
BM25+_fat_MSH_NoPRF 0.1887 0.2300 0.2009 0.2700
BM25+_fat_MSH_PRF 0.2656 0.3433 0.2626 0.3567
BM25+_fat_NoEXP_NoPRF 0.1908 0.2367 0.2139 0.2900
BM25+_fat_NoEXP_PRF 0.2805 0.3400 0.2741 0.3900
BM25+_fat_SHI_NoPRF 0.1913 0.2300 0.2197 0.2967
BM25+_fat_SHI_PRF 0.2671 0.3467 0.2420 0.3433
BM25+_fat_SNO_NoPRF 0.1873 0.2333 0.2090 0.3033
BM25+_fat_SNO_PRF 0.2556 0.3167 0.2384 0.3367
BM25L_f_MSH_NoPRF 0.2200 0.2533 0.2420 0.3300
BM25L_f_MSH_PRF 0.2857 0.3667 0.2629 0.3567
BM25L_f_NoEXP_NoPRF 0.2318 0.2900 0.2533 0.3433
LM_fat_MSH_NoPRF 0.1941 0.2500 0.2075 0.2700
LM_fat_MSH_PRF 0.2635 0.3233 0.2623 0.3333
LM_fat_NoEXP_NoPRF 0.2113 0.2667 0.2268 0.3033
LM_fat_SHI_NoPRF 0.2064 0.2767 0.2277 0.3300
LM_fat_SHI_PRF 0.2101 0.2733 0.2697 0.3700
LM_fat_SNO_NoPRF 0.2088 0.2367 0.2189 0.3133
LM_fat_SNO_PRF 0.2469 0.3067 0.2397 0.3400

lists to fusion has some disadvantages: generating more rank lists increases the number of
computational resources used (i.e., less efficient) and can lead to decreasing improvements
in retrieval precision. This chapter proposes Learning to Fuse (L2F), a rank fusion method
that greedily selects which rank lists to combine, based on incremental information gains.
L2F goal is to improve retrieval effectiveness through the diversification of rank selection,
improving efficiency by minimizing the number of rank lists (and thus features) to use.

The contributions of this chapter are three-fold:

• an exploration of the effects of document distribution across rank lists, described
by Vogt and Cottrell [102];

• the Inverse Square Ranking (ISR) rank fusion algorithm family, based on the ex-
ploitation of these effects;
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DOCUMENT RELEVANCE

• the learning to fuse algorithm based rank fusion algorithms that selects a small set
of rank lists that optimizes a given retrieval metric.

3.1 Modeling rank fusion scores according to document relevance

Rank fusion techniques compute a combined rank list according to document rankings over
multiple rank lists. As rank lists provide different degrees of similarity, documents that
are present on multiple rank lists are more likely to be relevant. The goal of this section is
to study this effect be measuring how relevant documents are distributed across rank lists.

Relevance was studied using rank lists from two different domains: vertical web search
(TREC Federated Web Search) and biomedical literature search (TREC Clinical Decision
Support). The TREC CDS dataset [87, 91] is the Open Access Subset of PubMed Central
(PMC). A total of 64 rank lists were created as a combination of different retrieval models
and query expansion methods. It is described in detail in section 2.6.1. The TREC
Federated Web Greatest Hits dataset [34] is a collection of vertical search engines rank lists
that cover a broad range of categories, including news, books, academia, travel, among
others. It contains a collection of the top 10 documents sampled from 148 rank lists from
vertical search engines over 50 queries per year. It is described in detail in section 2.6.5.

Table 3.2: Number of rank lists per document nrl for the TREC FedWeb dataset.

nrl 1 2 3 4 5+

% of documents 97.3% 1.5% 0.5% 0.4% 0.3%

Table 3.3: Number of rank lists per document nrl for the TREC CDS dataset. Results
are divided into ranges.

nrl 1-12 13-25 26-38 39-51 52-64

% of documents 71.5% 15.5% 6.8% 4.9% 1.3%

3.1.1 Exploring the distribution of documents across multiple rank lists

Multiple rank lists provide different and complementary views of the collection. The goal
of this section is to measure whether the number of rank lists, nrl, where a document
appears is correlated with the document relevance. This is related to the Chorus effect.
Tables 3.2 and 3.3 show the percentage of documents in the rank lists which are present
on multiple rank lists for the TREC FedWeb and TREC CDS datasets. On the TREC
FedWeb data, over 97% of documents appear only in a single rank list out of the full set of
157 rank lists, meaning that there is a very low overlap of documents across rank lists. This
is expected, as the search engines used to produce the rank lists were explicitly selected
to produce a diverse set of results. As TREC CDS rank lists were produced from a more
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Figure 3.1: Document relevance vs. the number of rank lists for the FedWeb dataset. The
X-axis represents the number of rank lists a document appears, nrl. The Y-axis represents
the ratios of relevant documents from that rank list. Relevance labels are not relevant
(non rel.), partly/potentially relevant (p. rel.), highly relevant (h. rel.) and navigational
or key relevant (key)

homogeneous set of features, the overlap of documents across different rank lists is higher:
28.5% appear in 13 or more rank lists out of the 64 rank lists, although only 1.3% of the
documents appear on over 52 rank lists.

The potential impact of nrl on retrieval performance becomes clear when measured
together with relevance. Figures 3.1 and 3.2 shows how relevance varies with the nrl. For
example, on Figure 3.1, over 80% of documents that appear on a single rank list are "not
relevant", 10% have "key relevance", and the remaining 6% are "highly relevant".

For FedWeb data, Figure 3.1, the correlation between frequency and relevance is
clear: over 50% of documents that show up on one rank list are relevant. The growth in
relevance with nrl seems to plateau for documents that are present on more rank lists:
the percentage of relevant documents remains between 55% and 70% as nrl increases.
CDS data, Figure 3.2, also shows an increase of relevance with nrl is also clear: 0.7% of
documents that appear only on a single rank list are relevant, while 25% of the documents
that are present on 52 or more rank lists are relevant. On CDS data, relevance keeps
growing with nrl (it does not plateau). Annex B provides an extended discussion on how
different functions (e.g., linear, exponential, logarithmic) fit the growth with relevance with
nrl. These experiments show that document frequency appears to be positively correlated
with relevance. CombMNZ explicitly models this effect by giving a linear boost with nrl.
However, the growth in relevance does not follow a linear pattern. The question becomes,
is there a function that can model this effect better?
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Figure 3.2: Document relevance vs. the number of rank lists for the CDS dataset. Axis
are similar to Figure’s 3.1. Relevance labels are not relevant (non rel.), partly/potentially
relevant (p. rel.), highly relevant (h. rel.)

3.1.2 Inverse Square Ranking

Search engines are designed under the assumption that users will only inspect the top-
ranked results. Differences in the ranking of documents towards the end of the rank list
start to lose significance. By boosting top-ranked documents score and multiplying it by
the nrl, the goal is to guarantee that documents that are highly ranked (higher probability
of relevance to the query) and appear on multiple rank lists (to exclude documents from
non-relevant engines) are ranked on top of the final rank list. ISR combines the inverse
rank approach, of RR and RRF, Section 2.5.2, using the inverse of the rank as the score,
with a linear nrl boost. The Inverse Square Rank fusion is defined as,

ISR(i) = nrl(i)×
nrl(i)∑
k=1

1
Rk(i)2 , (3.1)

where nrl is the number of times document i appears on a results list (document frequency),
and Rk(i) is the rank of document i on the kth rank list. Although the previous section
showed that the exponential decay could over-penalize documents with low rankings on
some approaches, the goal is to see if it can improve precision at the top positions of the
rank list.

ISR boosts document score using the absolute nrl. The previous section shows that
linear nrl boost over-emphasizes documents present on multiple rank lists. Logarithmic
boosting was selected to better model nrl, LogNISR:

LogNISR(i) = log(nrl(i) +σ)×
nrl(i)∑
k=1

1
Rk(i)2 , (3.2)
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Figure 3.3: Rank list performance from best to worst by NDCG@20 for FedWeb data.

where σ is a regularization factor that sets the "base" boost for documents that appear on
a single rank list.

3.2 Selecting which rank lists to fuse

The previous section showed how rank fusion techniques boost document scores according
to nrl. However, rank fusion algorithms are also affected by the retrieval performance
of the different rank lists. Figures 3.3 and 3.4 show how rank lists performance affects
rank fusion retrieval performance. The X-axis is the represents the number of ranked lists
combined for fusion techniques series; for the Ind. Rank Lists series the X-axis represents
the relative ranking of rank lists: best-performing rank lists are on the left. The Y-axis
represents the individual (Ind. Rank Lists) or combined rank list NDCG@20. For example,
the best rank list on FedWeb data ( the leftmost point on the dashed line on the X-axis)
had an NDCG@20 of 0.33; the second best had an NDCG@20 of 0.32; the worse performing
rank list (the rightmost point on the dashed line on the X-axis) obtained an NDCG@20 of
0.00. The full performance results for individual rank lists are available in Annex A. The
remaining lines represent the combination of rank lists using multiple fusion algorithms
(RRF and variants, LogNISR and Condorfuse). These charts illustrate one of the key
differences between the CDS and FedWeb task: differences in NDCG@20 for CDS rank
lists are small (low variability), while FedWeb rank list retrieval performance varies greatly
(high variability).

On the FedWeb dataset, fusion performance is similar across the tested rank fusion
algorithms. On CDS data, ISR and RRF have comparable performance, while Condor is
more affected by adding lower performing rank lists.

This experiment shows that rank fusion algorithms can deliver better results than the
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Figure 3.4: Rank list performance from best to worst by NDCG@20 for CDS data.

best individual rank list, but their performance degrades when adding low performing rank
lists. Thus, the goal is to find when to stop adding rank lists for fusion for optimal retrieval
performance. In other words, find the set of rank lists that is closer to the maximum of
the retrieval curves of Figures 3.3 and 3.4.

Consider a corpus of documents D, a set of queries Q with the corresponding definitive
(i.e., best possible) rank list rd (i.e., lists of documents sorted by relevance) and a set of rank
lists R, generated using multiple techniques and document features. The assumption is
that the best possible rank list is the one that maximizes the desired retrieval metric, based
on expert relevance judgments. E is an evaluation metric (e.g., Precision or Normalized
Discounted Cumulative Gain, NDCG) that quantifies retrieval quality. The goal of fusion
techniques is to find the rank list rd that maximizes the following:

argmaxrd(E(rd,Q)) (3.3)

Finding an adequate rank list rd is hard when little training data is available. Machine
learning based algorithms such as LETOR methods can overfit training data and generate
models that are not adequate for new queries. Consider a rank fusion technique F (e.g.,
RRF) that combines a set of rank lists into a single rank list. The goal is to estimate
it as a combination of rank lists: find the subset of rank lists Rc = [r1, r2, ..., rn], which
maximizes the expression,

argmaxRc(E(F (Rc),Q)), (3.4)

where F is a fusion function such as RRF. Rank lists produced using different features
will generate different sets of potentially relevant documents. Adding more rank lists for
fusion can promote existing or add new relevant documents to the final rank list. The goal
is to find which rank list ri ∈R−Rc causes the largest increase in retrieval performance
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Algorithm 1 Learning to fuse (L2F) algorithm
Input: R: list of rank lists, sorted in desc. order according to an evaluation metric E,
Input: E: evaluation metric that takes a rank list and a set of relevance judgments and

returns the value of that evaluation metric for that rank list,
Input: F : rank fusion function (e.g., RRF, ISR) that takes a set of rank lists and combines

them into a single rank list,
Output: Rc: final combined rank list.

1: Rc ← R0
2: R̂c ← Rc

3: R ← R - R0
4: while len(R)> 0 do
5: bestR ← R0
6: i ← 1
7: while i < len(R) do
8: if E(F (R̂c,Ri))>E(F (R̂c, bestR)) then
9: iterR ← Ri

10: i ← i+ 1
11: R̂c ← F (R̂c, bestR)
12: if E(R̂c)>E(Rc) then
13: Rc ← R̂c

14: R ← R− bestR
15: return Rc

on a metric E.
argmaxri(E(F ([Rc, ri]),Q)−E(Rc,Q)) (3.5)

This approach was inspired by unsupervised rank fusion techniques that follow the effects
described in [102]: promote documents that are highly ranked (skimming effect) and show
up in more than one rank list (chorus effect). Rank fusion algorithms like RR and RRF
give fusion scores to documents by summing the inverse of the document rank in the
individual rank lists. The chorus effect is visible in CombMNZ and LogNISR: document
score is multiplied by the number of rank lists where the document is present.

3.2.1 Learning to Fuse

Following the ideas described in the previous sections, unsupervised rank fusion methods
were extended by adding a supervised step. It selects which rank lists to combine, based
on their individual retrieval performance on few training query examples. Learning to
Fuse’s (L2F) training process sorts rank lists by performance and iteratively adds rank
lists for fusion while the final result improves, Equation 3.5. Algorithm 1 details the L2F
process. At each iteration, it finds the rank list bestR ∈ R that maximizes the metric E,
when combined with the tentative set of selected rank lists R̂c. After an iteration, if the
tentative combined rank list R̂c is better than the best current rank list Rc, bestR is added
to Rc. If not, Rc is not updated, and the bestR is removed from the rank list pool R.
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This process is repeated until all rank lists are tested. The iterative process is based on
the previous section’s findings: not adding rank lists that degrade performance increases
efficiency and can improve effectiveness. It is important to note that the rank lists R are
inspected according to their individual performance on the metric E. This allows L2F to
return the best possible rank list on extreme scenarios such as selecting a single rank list
when it achieves the best retrieval performance.

Algorithm 1 returns the set of rank lists Rc that maximizes metric E on training queries.
To apply this model to new queries, one computes a set of rank lists for the new queries
R̂c, using the same techniques as with Rc.

L2F shares some of the properties with LETOR algorithms, but also have crucial
differences: it does not assign weights to rank lists and can work better than LETOR
approaches on scenarios where less training data is available. Another L2F advantage
is that it limits the rank lists to the ones that provide real improvements. Thus, L2F
models can be more efficient than LETOR models, by working with a smaller subset of
rank lists. Another important advantage is that L2F techniques do not require explicit
scores, avoiding feature score normalization issues.

3.3 Evaluation

Experiments were divided into two sections that correspond to the techniques proposed
in this chapter:

• Unsupervised rank fusion: evaluate the retrieval effectiveness without training data
(i.e., manual relevance judgments);

• Learning to Fuse: find the balance between improving in retrieval effectiveness and
adding rank lists for fusion (reduce efficiency).

3.3.1 Unsupervised rank fusion

When working on a novel retrieval task, one cannot measure which features generate the
best rank list for that specific task. A possible solution is the application of unsupervised
rank fusion approaches: combine multiple rank lists with unknown performance, and
combine them into a single rank list. The goal is to generate a rank list which is close to
the best possible rank list.

This section assesses the performance of unsupervised rank fusion approaches on a
varied set of datasets, features and retrieval methods. Retrieval performance for the
individual features for all datasets is available in Annex A.

The fusion process for all datasets is similar: for each query, a set of rank lists is produced
using multiple features and retrieval methods. Documents present across rank lists are
grouped by a unique document id, and their final scores are computed using multiple
unsupervised rank fusion methods. To address score distribution issues as described
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by Montague and Aslam [75], rank list scores are normalized by subtracting the mean
score and dividing by the standard deviation of the scores on the rank lists. Rank lists are
limited to 1000 documents. When documents obtain the same final score, the ordering
on the final list is stable, meaning that running the same fusion algorithm with the same
data will return the same results.

Multimodal fusion: The goal of this experiment is to assess the performance of fusion
techniques on the fusion of rank lists produced from multimodal queries and documents
(text and images), Image CLEF Med dataset, Section 2.6.2 Queries are similar to the
medical retrieval use-case presented in Figure 1.2, chapter 1. The dataset is divided into
two tasks:

Ad-hoc image retrieval: Retrieve images that suit the query, for a total of 35 queries.
Queries consist of 1 to 7 sample images and a short text description of the medical diagnosis.

Case-based retrieval: Retrieve relevant articles from a subset of the PubMed Central
collection. Queries consist of a case description (with patient demographics, limited
symptoms and test results including imaging exams).

The rank lists used on this experiment were produced using HSV histograms (216
dimensions) for the image queries and by searching a textual index based on Apache
Lucene1 with domain-specific features (query expansion and pseudo-relevance feedback).

Results: Table 3.4 contains the results for the multimodal fusion for the ImageCLEF
image retrieval and case-based retrieval task task.

Rank-based methods such as ISR and RRF have the best retrieval performance on both
tasks. In the image retrieval task, LOGNISR outperformed other rank-based approaches
on all metrics. On the case-based retrieval task, ISR is the better method on all the tested
most metrics. Score based approaches do not perform as well as rank-based approaches on
both tasks, even after the normalization scores in the rank lists for fusion. CondorFuse’s
performance was also low due to the limited number of rank lists (two) for the voting
scheme.

Federated web search: The goal of this experiment is to test rank fusion approaches
on TREC FW dataset, Section 2.6.5. Table 3.5 contains the fusion results. The TREC
Federated Web Greatest Hits2 dataset [34] is a collection of vertical search engines rank
lists, designed for the TREC FedWeb 2013 and 2014 tasks. As the TREC FedWeb is
based on the rank lists provided by different commercial search engines, the document
scores are not available. Thus, since score-based algorithms require scores, the RRF score
corresponding to their inverse rank list was assigned to each document.

These results show a similar pattern to the ImageCLEF experiments: LOGNISR and
RRF based techniques achieve the best performance. ISR linear nrl boost is penalized by
the larger amount of rank lists. LOGNISR logarithmic nrl boost results in better retrieval
performance. Score-based approaches performance is closer to rank-based approaches, but
are still worse than rank-based approaches for most metrics.

1https://lucene.apache.org
2https://fedwebgh.intec.ugent.be/
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Clinical decision support: The goal of this experiment is to test rank fusion approaches
on TREC CDS dataset, Section 2.6.1. The TREC Clinical Decision Support (CDS) 2014
and 2015 datasets [87, 91] is the Open Access Subset of PubMed Central (PMC). PMC
is a database of open access full-text biomedical articles. Rank lists were generated using
the combination of various retrieval functions and query expansion techniques.

Table 3.6 contains the fusion results. On this experiment, score-based techniques
achieved performance comparable to rank-based approaches. The reason is that rank lists
are created using similar techniques, having more similar score distributions.

Table 3.4: ImageCLEF multimodal unsupervised fusion results.

ImageCLEF image ret. ImageCLEF case ret.

Fusion MAP NDCG@20 P@10 P@30 MAP NDCG@20 P@10 P@30

RRF 0.1508 0.2473 0.2171 0.1543 0.1505 0.2400 0.1600 0.1248

ISR 0.1458 0.2361 0.2057 0.1476 0.1608 0.2468 0.1800 0.1257
LogNISR 0.1511 0.2558 0.2286 0.1590 0.1443 0.2271 0.1429 0.1162

CombSUM 0.1394 0.2458 0.2000 0.1524 0.1232 0.2101 0.1571 0.0762
CombMNZ 0.1172 0.2125 0.2000 0.1533 0.1002 0.1737 0.1200 0.0790

Condor 0.0214 0.0636 0.0486 0.0371 0.0590 0.1302 0.0886 0.0448

Table 3.5: TREC FW unsupervised fusion results.

TREC FW 13 TREC FW 14

Fusion MAP NDCG@20 P@10 P@30 MAP NDCG@20 P@10 P@30

RRF 0.3304 0.4961 0.7300 0.4840 0.2284 0.3486 0.5460 0.3273

ISR 0.2420 0.3245 0.5320 0.2707 0.1868 0.2271 0.3720 0.2073
LogNISR 0.3214 0.4871 0.6800 0.4840 0.2287 0.3575 0.5320 0.3273

CombSUM 0.2876 0.4166 0.6660 0.3713 0.2129 0.2799 0.4720 0.2587
CombMNZ 0.3164 0.4668 0.7160 0.4347 0.2343 0.3360 0.5280 0.3107

Condor 0.3174 0.4798 0.7300 0.4447 0.2234 0.3274 0.5320 0.2973

Table 3.6: TREC CDS unsupervised fusion results.

TREC CDS 14 TREC CDS 15

Fusion MAP NDCG@20 P@10 P@30 MAP NDCG@20 P@10 P@30

RRF 0.1392 0.2699 0.3300 0.2756 0.1331 0.2677 0.3533 0.3289

ISR 0.1283 0.2522 0.3100 0.2611 0.1240 0.2413 0.3433 0.2889
LogNISR 0.1259 0.2490 0.3033 0.2589 0.1213 0.2373 0.3367 0.2856

CombSUM 0.1354 0.2694 0.3367 0.2678 0.1284 0.2596 0.3767 0.3167
CombMNZ 0.1358 0.2672 0.3300 0.2711 0.1280 0.2591 0.3767 0.3200

Condor 0.0656 0.1665 0.2033 0.1489 0.0566 0.1574 0.2533 0.1533
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Conclusions: These experiments show that unsupervised approaches can offer compa-
rable or better retrieval performance than the best individual rank list, without any prior
knowledge about individual rank list performance.

The next section shows how analyzing the relevance judgments enable selecting only
rank lists that help to create the best possible rank list.

3.3.2 Learning to Fuse

LETOR and L2F fusion performance was evaluated on two types of settings: (1) with
rank lists showing low-variability in retrieval performance and high-overlap in documents
(TREC CDS); and (2) rank lists showing high-variability in retrieval performance and
low-overlap in documents across rank lists (TREC FedWeb).

Baselines: Baselines include the LETOR methods, AdaRank [107], Random Forests [20],
LambdaMART [105] and Coordinate Ascent [70], as implemented in RankLib3. For L2F,
the impact of the rank fusion techniques (e.g., LogNISR, RRF [30], and Condorfuse [76])
on L2F retrieval performance was also measured.

Protocol: Each dataset was divided into train and test splits. For the TREC CDS
dataset, methods are trained and validated on 2014 queries and tested on 2015 queries (30
queries each), and vice-versa. Conversely, for the FedWeb dataset, methods are trained
and validated on 2013 queries and tested on 2014 queries (50 queries each), and vice-versa.
Final results are then averaged over both splits. Fused rank lists are limited to 1000
documents. Both L2F and LETOR methods used rank lists as the input features and were
trained using the same train and test splits.

Rank fusion techniques were optimized for NDCG@20 and evaluated the produced rank
lists using NDCG@20 and P@10. Valizadegan et al. [99] showed that NDCG provides
the most stable fusion retrieval results. The evaluation metrics were computed using the
trec_eval script.

3.3.2.1 Rank fusion experiment

Table 3.7 contains the results for the TREC FedWeb and CDS fusion experiments. Baseline
results include the best single rank list on the training data (L2F-1 baseline), correspond-
ing to the first iteration of the L2F algorithm and the L2F algorithm with no stopping
criteria, thus, with the highest computational complexity (L2F-NoStop baseline). These
two baselines correspond to the lower-bound and upper-bound of the L2F algorithm.

On the TREC FedWeb data, the best results were achieved by L2F-RRF, with the best
NDCG@20 of 0.400 and second best P@10 (a statistically significant improvement over the
L2F-1 baseline). The retrieval performance differences between L2F methods show that
RRF is better at modeling the decay in relevance with rank list position. Learning to rank
methods achieved good results, but still lower than L2F RRF, at a higher computational

3https://sourceforge.net/p/lemur/wiki/RankLib/
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Table 3.7: Fusion results for TREC FedWeb and CDS. Metric under optimization was
NDCG@20, "Fusion" is the fusion method used, "#rank lists" is the ratio of selected rank
lists/total rank lists. The remaining columns are retrieval results.

TREC FedWeb TREC CDS
Retrieval model # rank lists NDCG@20 P@10 # rank lists NDCG@20 P@10

Baseline

L2F-1 1/157 0.153 0.446 1/64 0.254 0.347
L2F-NoStop RRF 157/157 0.423 0.644 64/64 0.269 0.342

Learning to rank

AdaRank 14/157 0.386 0.608 5/64 0.241 0.320
Coordinate Ascent 157/157 0.362 0.574 64/64 0.245 0.317
Random Forests 113/157 0.303 0.474 64/64 0.274 0.363
LambMART 25/157 0.301 0.482 50/64 0.233 0.315

Learning to fuse

L2F-RRF 6/157 0.400 0.601 3/64 0.263 0.342
L2F-LogNISR 6/157 0.381 0.593 2/64 0.246 0.335
L2F-CondorFuse 6/157 0.342 0.506 2/64 0.268 0.372

cost. AdaRank achieved the second best NDCG@20 and best P@10, while Random Forests
and LambdaMart were significantly better than the baseline on the NDCG@20 metric.

The results for TREC CDS data show a different pattern. The Random Forests model
achieved the best NDCG@20 (but not statistically significant), while L2F-CondorFuse
obtained the best P@10 corresponding to a statistically significant improvement of the
L2F-1. Combined with L2F-RRF, these approaches got better performance than the best
single run from training data. The smaller variance in retrieval performance in this task
is due to the smaller differences in performance in the original rank lists.

These experiments show that finding the best rank list on datasets with few query
examples and different document distribution across rank lists is a non-trivial task. For
example, AdaRank achieved the second best results for the FedWeb dataset and poor
results on the CDS dataset. On the other hand, L2F using RRF was the most consistent
method across all metrics and datasets. Also, it is interesting to note that for both datasets,
L2F achieved equal or better results with far fewer rank lists than the LETOR baselines.
The next section discusses this issue in depth.

3.3.2.2 Influence of the number of rank lists

Figures 3.5 and 3.6 illustrates how the number of rank lists for fusion affects retrieval
performance. Methods that combine fewer rank lists are on the left side of the graph,
and thus, have a lower computational complexity (they require the computation of fewer
rank lists per query). Using fewer rank lists reduces the complexity as fewer features are
needed to compute the final search results. Thus, this is an important aspect of every
search engine. L2F-RRF retrieval performance is based on the fusion of six rank lists on
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Figure 3.5: Retrieval performance versus number of rank lists fused for TREC FedWeb.
The X-axis is the represents the number of ranked lists combined. The Y-axis represents
the combined rank list NDCG@20.
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Figure 3.6: Retrieval performance versus number of rank lists fused for TREC CDS.

the TREC FedWeb and two rank lists on the TREC CDS (less than 5% and 3% of rank
lists respectively). In contrast, LETOR approaches added more rank lists (the full set in
the case of Coordinate Ascent and RandomForests on the FedWeb experiment), which not
only increases the complexity without a corresponding increase in retrieval precision. On
the TREC CDS experiment, Random Forest achieved an improvement in NDCG@20 over
L2F-1, but it used all 64 rank lists, and the difference is not statistically significant. Other
LETOR approaches achieved worse results while using more features for fusion. However,
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the surprising result is that L2F-Condorcet achieved the best P@10 with only two rank
lists. L2F turned out to be the most economical model regarding complexity and the best
model in retrieval precision.

3.4 Conclusion

This chapter described ISR rank fusion and the L2F rank selection method. ISR fusion
is based on the quadratic decay of document scores and logarithmic document-frequency
normalization, which is closer to the distribution of relevant documents, as seen in sec-
tion 3.1.2. Highly ranked documents and document-frequencies across different lists are
the most important qualities of documents in rank-based fusion. The ISR algorithm shares
the simplicity of RRF with improved retrieval performance through logarithmic document
frequency normalization with LogNISR. In the unsupervised retrieval experiments, ISR-
based techniques were the most balanced solutions, in line the best existing algorithms
(RRF) on most metrics.

L2F is a greedy supervised rank list selection and fusion algorithm. The proposed
method works better than LETOR baselines in scenarios with limited training data, achiev-
ing good results using a small number of rank lists for fusion. The evaluation process
showed that L2F achieves equal or better results than LETOR, using fewer rank lists than
LETOR (3% and 5% of all rank lists for the TREC CDS and TREC FedWeb datasets
respectively). It also shows how dataset properties such as overlap and performance
variability affect both L2F and LETOR approaches.
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Multimedia vertical partit ioning indexes

Multimedia search systems must deal with the challenges of managing multimodal docu-
ments and queries at increasingly larger scales. These challenges include how to combine
the search results from a heterogeneous set of features while dealing with scales that go be-
yond the computational capabilities of individual nodes. Existing research the distribution
of multimedia indexing is scarce; experiments are performed at either small scales [108] or
are evaluated only on a single feature space [74]. This chapter addresses the key efficiency
aspects in the deployment of a distributed search architecture, capable of handling several
millions of multimedia documents. This chapter proposes the MVP architecture, based on
feature-level vertical partitioning. It was designed to:

• simplify the distribution of documents and queries across nodes;

• work independently of the indexing algorithms used to index individual modalities;

• combine results from several heterogeneous sources.

To leverage the distributed nature of the search architecture, individual feature indexes
are tested using an inverse index structure based on sparse hashes, Sparse Hash Index (SHI).
A comprehensive evaluation of both general retrieval effectiveness metrics and efficiency
metrics provides a unique assessment of the several efficiency bottlenecks faced by a search
engine. The scalability of the search architecture was evaluated on multiple index sizes,
i.e., up to 100 million documents per processing node. In summary, the contributions of
this chapter are twofold:

• the formalization and deployment of a scalable vertically partitioned distributed ar-
chitecture, MVP, capable of handling heterogeneous large-scale search, with minimal
distribution overhead;
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• a comparison of the scalability of SHI compared with state-of-the-art techniques on
a large scale evaluation using datasets with hundreds of millions of feature vectors.

4.1 An architecture for vertical index distribution

The MVP architecture is based on two types of nodes: processor and aggregator nodes.
Processor nodes which index documents and answer queries for individual feature spaces;
aggregator nodes which serve as the architecture’s entry points, routing queries to relevant
processor nodes and combining results from searching those nodes.
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Figure 4.1: Multimodal Vertical Partitioning architecture

Figure 4.1 shows the full search process. Documents are parsed by the aggregator
node and split by media type (e.g., text or images), step 1. For each media type, the
aggregator node makes a search request to each relevant processor node, step 2. After the
search, the aggregator collects and combines the rank lists, steps 3 and 4. Communication
between nodes is made through REST requests using JSON to represent indexing and
query requests.

4.1.1 Vertical distribution

An important challenge for large-scale search systems concerns the distribution of docu-
ments across nodes for indexing. On textual indexes, vertical partitioning is performed at
term level: document words are distributed per nodes; at query time, nodes containing the
query words will be searched. For multimedia feature vectors, the advantages of vertical
partitioning for individual feature spaces are smaller, as vector similarity is measured
across all dimensions. Thus, MVP vertical partitioning is performed at feature index level,
as indexes are independent of each other and can be searched independently. This is also
important as different types of media (e.g., text document only vs. text, images, and video)
require different types of processing and indexing.
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Algorithm 2 lists the full distributed indexing procedure: for each modality in the
documents, line 1, the aggregator node sends indexing requests to each relevant processor
node (e.g., send images to GIST and SIFT indexes). Each processor node extracts feature
vectors and adds them to the index, line 4.

Algorithm 2 Distributed indexing algorithm
Input: document Doc, set of indexes I grouped by type

1: for each data type t in Doc do . aggregator node
2: for each feature index s in I with type t do . concurrently on proc. nodes
3: extract features f for Doc on s . optional
4: add f to index s

This algorithm works seamlessly for multi-feature image retrieval and multimodal
retrieval systems (e.g., video retrieval system with audio, image and textual features).
MVP is also flexible in the assignment of indexes to nodes: it works with horizontally
partitioned indexes running on multiple nodes when a single feature index does not fit into
a single machine. mvp is also adequate for indexes with few documents, as it enables the
assignment multiple indexes to a single node.

Algorithm 3 lists the distributed retrieval procedure: for each media type in the query,
line 2, the aggregator node simultaneously queries each relevant processor node and collects
the results. Each processor node extracts feature vectors (if not previously extracted),
queries the index, (line 5) and returns the sorted rank list. The aggregator node collects
the results and aggregates individual rank lists into a single final rank list (line 7).

Algorithm 3 Distributed retrieval algorithm
Input: query q, number of neighbors to retrieve k, set of indexes I grouped by type
Output: a rank list Rl of k (nearest) neighbors.

1: C ← ∅ . set of candidate rank lists
2: for each data type t in q do . aggregator node
3: for each feature index s with type t in I do . concurrently on proc. nodes
4: extract features f for q . optional
5: cs ← search f on s
6: add cs to C
7: aggregate rank lists in C into Rl . aggregator node
8: return Rl1,...,k

The aggregation algorithm can be generalized as a function that takes a set of rank
lists and returns a combined rank list. These techniques can be either unsupervised
or augmented by determining the relevance or weight of each index to a dataset using
learning-to-rank approaches, as presented on Chapter 3.

An advantage of the proposed architecture is its resilience to nodes failure. In multi-
modal data each document is represented by many different feature vectors: image search
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engines can easily have more than ten feature vectors [1] per image corresponding to 10
independent indexes. Thus, the aggregator node waits for a set timeout (e.g., set to 100
ms) and, if a node fails to respond to requests, returns the result from the remaining nodes.

4.2 Sparse hashes for single-node indexing and retrieval

The MVP architecture temporal performance is limited by the time spent searching feature
indexes. Sparse hashing techniques provide effective retrieval by the usage of a locality-
aware sparse hash dictionary: at retrieval time, only the entries with common non-null
values on the hash space are inspected. Thus, the search space is drastically reduced
during retrieval time. This section recaps sparse hash techniques and details how they can
be combined with an inverted indexing for retrieval.

4.2.1 Creating sparse hashes

Sparse hashing techniques transform dense d dimensional feature vectors into a sparse h
dimensional vector, where d << h and with s non-zero coefficients, s << d << h. In other
words, compress the initial signal into a small number of coefficients (much smaller than
the original space dimensionality) on a higher dimensional space. Sparse hashing is based
on theoretically well-grounded dictionary learning and sparse reconstruction techniques.

Section 2.3 describes how to create sparse hashes (KSVD, [2] and OMP, [84]) and
section 2.3.2 describes how inverted index structures can be used to index sparse text
documents. Sparse hash indexing was initially proposed by Borges et al. [19], and is
extended in this Chapter to vertically distributed indexes.

Consider the original feature vector y ∈ R
d, a sparse vector x ∈ R

h and a sparsity
coefficient s. From a set of n, d-dimensional vectors in the original space as Y ∈ R

n,d,
the goal is to find a function f that transforms them into h-dimensional sparse vectors as
X ∈R

n,h.

4.2.2 Sparse hash indexing

Sparse hashes have a key property which can be explored for inverted index: vectors that
are close in the original space have non-zero coefficients on similar positions in the sparse
vector space than vectors that are further apart. This closely mimics an inverted index
structure, where each inverted index entry (i.e., posting list) corresponds to a sparse hash
position (i.e., h dimensional hashes are mapped to h posting lists): documents are stored
in the posting lists that match the hash dimensions where they have non-null coefficients.

The construction of the sparse hash inverted index is illustrated by Figure 4.2. The
indexing construction process is the following: given a set of feature vectors Y , recover their
sparse solutions X This sparse representation set X determines the non-null coefficients
to match hashes to posting lists of the index I. The final step is to sort each posting list
by placing the hashes with higher coefficients at the beginning. This final sort guarantees
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Figure 4.2: Sparse hash computation and indexing

Algorithm 4 Intra-node indexing algorithm (processing node)
Input: the query vector y and the set of posting lists Pl.

1: x ← sparseHashing(y)
2: for Plb in Pl do . in parallel
3: k ← binarySearch(Plb,xb) . find closest coeff.
4: Plb ← ...,P lb,k,xb,P lb,k+1, ... . insert

Algorithm 5 Intra-node retrieval (processing node)
Input: the query vector y, the set of posting lists Pl, the number of neighbors to retrieve

k and the number of candidates to examine per posting list nc.
Output: a list of k (nearest) neighbors C.

1: C ← ∅
2: x ← sparseHashing(y)
3: for xl in x do . in parallel
4: j ← 0
5: while |C|< nc∩ j < |Pll| do
6: C ← C ∪{

∥∥y,P ll,j∥∥2 ,P ll,j}
7: j ← j+ 1
8: C ← sortL2(C) . Perform candidate sort
9: return C1,...,k

that, at query time, the most representative document feature vectors of each posting list
are examined first.

The intra node document indexing is described in Algorithm 4. After the partitioning
process, Equation 5.3, documents are added to one or more posting lists in position, lines 3
and 4, to keep posting lists sorted in descending order by hash coefficient.

4.2.3 Sparse hash retrieval

Algorithm 5 details the processing node candidate selection process. For each posting list
Pl that matches the non-null hash positions xl, SHI collects and re-rank a set of candidates,
lines 5 to 7. Candidates are sorted, line 8 and the k ones with the lowest distance on the
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original feature vector space are returned to the coordinator node. It exploits the fact that
the tested sparse coding algorithm (OMP) is greedy and select the most correlated atom
in the dictionary first.

4.3 Experiments

A set of experiments was performed to evaluate all the components of the architecture:

• Multimodal image and text retrieval: evaluate aggregation efficiency on a multimodal
task, using multimodal (textual and image) documents (Section 4.3.2);

• Single node retrieval: evaluate the retrieval performance on an individual node
(Sections 4.3.4 and 4.3.6);

• Distributed multi-feature retrieval: evaluate the retrieval performance using multiple
feature types on a distributed setting (Section 4.3.5).

4.3.1 Experimental setup

Experiments were run on a set of five nodes, all running Ubuntu 14.04: four processor
nodes with an i7-3930K processor and 64GB of RAM and one aggregator node with i7-920
with 12GB of RAM. All feature vectors, indexes, and other structures were placed in the
main memory.

4.3.1.1 Datasets

The datasets tested were: The ImageCLEF Medical dataset, section 2.6.2, composed of
70,000 biomedical articles with the corresponding 300,000 images. The tested system
was a part of our submission to ImageCLEF Medical 2013, described in detail in [77].
Textual retrieval is based on Apache Lucene with pseudo relevance feedback (PRF) query
expansion; image retrieval is based on segmented histogram features based on the HSV
color space and CEDD [25] features. The Tiny Images dataset, section 2.6.3 contains a set
of 79,302,017 GIST feature vectors with 384 dimensions. The ANN dataset, section 2.6.4
is composed of a set of SIFT (128 dimensions) and GIST (960 dimensions) feature vectors.
It is divided into three subsets: two one million vectors sets with both SIFT and GIST
features (used in sections 4.3.2 to 4.3.5) and a one billion SIFT vector set (used in section
4.3.6).

4.3.1.2 Metrics

The efficiency and effectiveness of the proposed method were measured using metrics
widely reported in the retrieval architecture [42, 96, 97]: the average of the percentage
of the true 50 nearest neighbors that are present in the top 50 positions, avgP@50 and
average query time. Experiments were based on previously extracted feature vectors, as

56



4.3. EXPERIMENTS

the objective is to test indexing and retrieval, and extracting feature vectors introduces
additional temporal variability across nodes. For each query, the output of each method is
compared with the output of the linear exhaustive search system. Hence, the top k nearest
neighbors correspond to the relevant items.

4.3.1.3 SHI Parameters

KSVD dictionary learning iterations were limited 25 since from this point onward the
average recovery error did not vary significantly (< 1%), Borges et al. [19]. All results
reported in this section used ten OMP iterations, which generates a sparse hash with both
positive and negative hash coefficients. For the SHI algorithm, the number of candidates
to examine was set to {1%, 2%, 3%, 4%, ..., 10%, 20%, 30%, 40%, ..., 100%} of the index
size. Hash size was set to 1024.

4.3.2 Multimodal retrieval using the MVP architecture

Time

Aggregator node

Processor node CEDD

Network

Processor node HSV

Query distribution

Communication

Single-node retrieval

Results formatting

Rank aggregation

15.29 ms0.34 ms

2.18 ms

27.08 ms

47.35 ms

0.85 ms

2.18 ms

Total = 222.14 ms

Processor node Lucene

202.15 ms

Figure 4.3: MVP overhead versus retrieval time on the ImageCLEFMed 2013 dataset

Figure 4.3 contains the detailed account of the time taken by the individual architecture
components, for the SHI indexer using the ImageCLEF dataset. The times for query
distribution, communication, formatting, and aggregation processes are average times,
determined using a set of 5000 multimodal queries and three individual indexes (Lucene
text index with PRF, CEDD and HSV image indexes) with k = 1000. On this experiment,
the textual index takes the greatest share of retrieval time (over 200 ms) compared to the
image index retrieval. This is due to time spend performing multiple index inspections
for query expansion (pseudo-relevance feedback). Table 4.1 details how long each node
spend on feature extraction and on retrieval. On small scales, the time spent extracting
the CEDD feature vector was longer than the retrieval time.

The total overhead of SHI is 2̃0 ms, meaning that the total query time will be approx-
imately the retrieval time of the slowest index plus 20 ms. This overhead is small when
compared to individual index retrieval time, lowering the cost of using multiple features.
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Table 4.1: ImageCLEF Med 2013 efficiency results

Features Feature extraction Retrieval Total time Retrieval time (ms)

CEDD 27.12 20.23 47.35
217.44HSV 5.24 21.84 27.08

Text retrieval – 202.15 202.15

4.3.3 Single node comparative benchmark

This experiment shows the impact of changing the size of the hash codes and percentage
of the index to inspect on temporal and retrieval performance on the ANN Vector GIST
and SIFT one million vector sets. The following set of widely known indexing algorithms
was selected as baselines:

• k-means tree (kMeansTree), a randomized kd-tree (kdTree), by [78], implemented in
FLANN1;

• LSH implementation2 described in [42], with multiple code sizes {64, 128, 256, 512}
bits, Spherical Hashing [42] (with multiple code sizes {64, 128, 256, 512 code sizes,
and two vector distance metrics: Hamming distance (SH) and spherical Hamming
distance (SH_shd))

• MSIDX method [96] 3, with the number of candidates to examine was set to {0.5%,
1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%} of the index size.

Figure 4.4, shows two major trends. The first trend occurs in the initial part of the
curve, where precision grows very rapidly as query time increases; in the second trend,
precision grows linearly towards the maximum precision. These two trends are visible in
the MSIDX method and the SHI method. The different slopes indicate that both methods
are optimized for efficiently retrieving the top nearest neighbors. As a consequence, after
a given point, the curve slope is not as steep, showing a loss in performance as a side-effect
of OMP choosing the higher coefficients first.

SHI proposal achieved 49% precision by inspecting 10% of the index and in less than
20% of the linear search time (10% of inspected data corresponds to the tenth point in the
SHI curve). Similar trends were observed on experiments with SIFT features, Figure 4.5.

4.3.4 Single-node retrieval efficiency

For the scalability experiments, parameters were set according to their performance on the
previous experiment: SHI and MSIDX: number of candidates to examine: 10% of the index
size, SH_hd, SH_shd, SH_lsh: 128-bit codes. Figure 4.6 shows the performance when

1http://www.cs.ubc.ca/research/flann/
2http://sglab.kaist.ac.kr/Spherical_Hashing/
3http://vcl.iti.gr/msidx/
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Figure 4.4: Single node retrieval benchmark on the ANN Vector GIST onde million vector
dataset. avgP@50 vs. query time with k = 1000.
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Figure 4.5: Single node retrieval benchmark on the ANN Vector SIFT one million vector
dataset. avgP@50 vs. query time with k = 1000.

using indexes with variable size and with different dimensionalities. Retrieval performance
is stable with index size, but, for SHI and to a smaller extent, MSIDX, avgP@50 increases
until the index contains one million documents and then it stabilizes. This effect is opposite
on hash-based algorithms, where precision drops with index size. The hypothesis is that
the small hashes become less discriminative as the index size grows and that the sparse
hashes remain discriminative for all tested index sizes.

The performance differences between features are also clear: the benefits are more clear
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Figure 4.6: Avg. P@50 vs. query time for multiple index sizes. Each color represents a
different index size: from lightest to darkest: 100k, 250k, 500k, 750k and 1M.

on the (high dimensional) GIST features: speedup of SHI and MSIDX vs. linear is about
5.2×. All indexers get better precision on the lower dimensional (128) SIFT features, but
speedup vs. linear on the faster indexes (SHI and MSIDX) is not as high, about 2×. SHI
stands out for both features: it is the faster or one of the fastest indexes on all experiments
and achieved the highest precision ( 73% on SIFT and 43% on GIST).

Figure 4.7 shows the performance on the larger Tiny Images data with GIST features
with 384 dimensions, using five million vectors. Index performance is close to ANN GIST
dataset experiments: SHI is the fastest and achieves higher precision. Experiments on
the larger 2M and 5M feature vector indexes follow the expected trends: SHI and MSIDX
precision is stable while other hash-based approaches perform worse as the index size
increases. In general, the SHI results compare favorably to the other tested methods. LSH
and variants (SH) achieve the slowest results: the retrieval performance improves with the
size of the binary codes, but they are still slower than the proposed method.
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Table 4.2: Retrieval times on ANN SIFT and GIST one million vector dataset with variable
index subset size

SIFT GIST Total
Name n Time avgP@50 Time avgP@50 Time (ms)

Linear 100k 8.52 1.00 59.38 1.00 80.22
250k 21.14 1.00 148.28 1.00 169.12
500k 42.08 1.00 297.20 1.00 318.04
750k 63.36 1.00 442.32 1.00 463.16
1M 84.03 1.00 588.17 1.00 609.01

SHI 100k 4.43 0.71 17.32 0.40 38.16
250k 10.34 0.72 31.35 0.42 52.19
500k 21.29 0.72 55.18 0.47 76.02
750k 33.27 0.74 79.80 0.48 100.64
1M 46.61 0.74 102.20 0.49 123.04

MSIDX 100k 3.84 0.30 10.86 0.20 31.70
250k 10.84 0.31 27.75 0.21 48.59
500k 22.77 0.31 56.84 0.22 77.68
750k 33.72 0.32 84.05 0.23 104.89
1M 43.85 0.33 111.98 0.23 132.82

LSH 100k 16.41 0.29 16.54 0.18 37.38
250k 42.57 0.26 42.73 0.15 63.57
500k 87.22 0.20 87.53 0.12 108.37
750k 132.59 0.21 132.91 0.12 153.75
1M 192.56 0.20 178.54 0.12 199.38

SH_hd 100k 16.41 0.27 16.55 0.11 37.39
250k 42.62 0.23 42.67 0.09 63.51
500k 87.24 0.21 87.59 0.08 108.43
750k 133.12 0.19 132.81 0.07 153.65
1M 192.09 0.18 178.77 0.07 199.61

SH_shd 100k 24.79 0.28 24.70 0.23 45.54
250k 63.32 0.24 63.02 0.18 83.86
500k 128.66 0.20 128.33 0.15 149.17
750k 194.62 0.19 193.29 0.15 214.13
1M 262.56 0.18 258.98 0.13 279.82
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Figure 4.7: Avg. P@50 vs. query time for multiple index sizes. Each color represents a
different index size:from lightest to darkest: 100k, 250k, 500k, 750k, 1M, 2M and 5M.

4.3.5 Distributed retrieval efficiency

This experiment studies the performance of MVP in a distributed setting across multiple
index sizes and features (aggregator makes the query and aggregates the results from the
processor nodes). In this experiment, the aggregation process refers to the combination
of the results produced from the two modalities into a single rank list using rank fusion
techniques. The datasets tested were ANN Vector SIFT and GIST one million sets.

Table 4.2 contains the precision and temporal values for the full architecture experi-
ments. The n column contains index size, the Time SIFT, and the Time GIST column
corresponds to processor node times on Figure 4.6 and the Total Time column correspond
to the total query time at the aggregator for the multi-feature querying process. These
results follow the same pattern as the scalability results on the previous section. The SHI
index continues to offer the best balance between temporal and retrieval performance for
all index sizes.

4.3.6 Testing the limits of vertical index partitioning

The final experiment was to test the scalability of the SHI algorithm for the larger ANN
Vector SIFT one billion feature set (up to 100 million vector indexes). As the memory
requirements of this experiment exceeded the resources available locally, this experiment
was performed on a G5 Azure Virtual Machine (Intel Xeon E5 CPU, 2 GHz, 32 cores, 448
GB RAM). Due to the scale of the datasets, SHI retrieval was limited to 0.5%, 1% or 5%
of the posting list sizes.

Figure 4.8 shows the performance of the SHI algorithm with multiple limits and the
linear exhaustive search. On Figure 4.8 (top), shows the temporal performance vs. size.
Retrieval grows sub-linearly for the 0.5% and 1% limit and approximately linearly for the
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Figure 4.8: Large-scale retrieval comparison: (a) time vs. index size and (b) performance
vs. avgP@50 size on subsets of the ANN Vector SIFT one billion vector dataset.

5% limit. As expected, linear search grows linearly with size. On Figure 4.8 (bottom) shows
the retrieval performance vs. size. The plot shows a small increase in retrieval performance
with index size, for the same inspection limit (about 10% increase from 1M to 100M). The
hypothesis is that, as the increase in the number of indexed feature vectors leads to more
documents per bucket, the retrieval algorithm will find less duplicated results across top
buckets, meaning that the algorithm will add fewer candidates from less relevant buckets.
At larger scales, inspecting smaller subsets of the index becomes even more effective; at
100M, examining 5% is over eight times slower than 1%, at the cost of 12% precision.

4.4 Conclusion

This chapter described MVP, an architecture for a large-scale heterogeneous search engine.
The proposed architecture is generic, scalable and adds little overhead to the retrieval
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process. Rank fusion achieves good retrieval performance and is agnostic to the chosen
features. The SHI algorithm is capable of sub 100 ms retrieval, scalable to millions of
documents per index while offering the best precision results across the tested approaches.

Section 4.3.6’s experiment showed that having hundreds of millions of feature vectors
on a single node requires expensive nodes with very large amounts of memory (hundreds
of GB). Partitioning large indexes to multiple nodes can decrease cloud deployment costs
by using more, less expensive nodes. The following chapters describe the partitioning of
large, single feature indexes to multiple nodes using sparse hashing techniques.
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Sharding very large-scale multimodal indexes

The previous chapter presented an architecture for the indexing of millions of multimedia
documents, by partitioning indexes across nodes. However, the number of documents and
the size of single-feature indexes in platforms such as Google Reverse Image Search or
Pinterest recommendations [52] goes beyond the processing capabilities of a single processor
node.

These platforms require efficient indexing algorithms that can deal with high-dimensional,
dense feature vectors at very large scales. However, existing distributed indexes are either
based on (i) distributing sub-trees [3, 79], meaning that the number of nodes to search is
tied to data dimensionality or (ii) combining existing single-node indexing algorithms with
partitioning based on large-scale processing frameworks (e.g., Map-Reduce [33]). Such
frameworks are designed to treat all data and nodes equally (i.e., random partitioning,
query all nodes for all queries); most do not take advantage of the similarities between
the document collection data and queries for partitioning. In addition, they are optimized
for batch processing, having high temporal overhead for non-batch query processing [74].
Existing effective single node similarity-based indexing techniques assign documents to
only one partition [48] or cannot determine which partitions should be inspected per
query without transferring the indexing structure [3, 79]. The question then becomes can
collection-specific knowledge be applied to the index distribution problem?

A distributed index where partitions are based on the distribution of feature vectors
in the original space can improve efficiency, as nearest neighbors are only present on a
small number of partitions which reduces the number of nodes to inspect for each query.
Chapter 4 showed how sparse hashes create similarity-based index partitions, SHI, by
assigning documents and queries that share principal directions to the same posting lists.
Can sparse hashing provide effective horizontal index partitioning by distributing posting
lists across nodes?
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Figure 5.1: DISH architecture

This chapter describes DISH, a distributed k-NN index for cloud-based systems, based
on sparse hashes. DISH shows that sparse hashes can balance the computational load
between nodes using data-driven distribution policies for high-dimensional data. DISH
distributes and balances documents and queries to a subset of the nodes, according to their
orthogonal similarities. It explicitly addresses the efficiency and resource constraints of a
distributed architecture, by enabling querying only nodes with potentially relevant docu-
ments and providing redundant by assigning documents to more than one nodes. The goal
is to distribute documents across nodes so that each query is served by a redundant, but
limited number of nodes. Indexing each document on more than one node enables distribut-
ing search over multiple nodes for each query and gives some redundancy guarantees. Not
using the full set of nodes for each query is a fundamental property to prevent performance
degradation when there are multiple streams of queries being answered simultaneously.

Figure 5.1 illustrates the DISH architecture: It is divided into two types of nodes:
coordination nodes and index nodes. Coordination nodes receive search query requests,
route them to index nodes using sparse hashing and aggregate the retrieved search results.
Index nodes are responsible for storing index shards. They receive requests from the
coordination node to retrieve the candidate documents that exist in their index shard.

The main contribution of this chapter DISH, and its application for distributed media
search. DISH’s main properties are:

• Distributed image/video similarity index: similarity-based document-to-node allo-
cation policy based on theoretically well-grounded sparse hashing algorithms;

• Robust and redundant index sharding: each inspected shard brings new relevant
candidate documents to the ranking. Also, the index redundancy also contributes
towards a graceful performance degradation on node failure;

• Flexible and balanced resources allocation: the quantification of to document-partition
membership value allows choosing which nodes to query (e.g., do not query nodes
with low membership values if the load is too high). This allows supporting the
increase in load when answering multiple concurrent query streams.
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The second major contribution is the cloud deployment of DISH for large-scale dis-
tributed image search. DISH was evaluated on a multi-tenant cloud provider to measure
its effectiveness in real-world scenarios. This real-world deployment of the distributed me-
dia index enabled a close examination of the behavior of the proposed solution regarding
concurrent querying, scalability, and resilience to node failure.

5.1 Distributed indexing and retrieval
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Figure 5.2: DISH index partitioning

DISH was designed to tackle the challenges arising from the distribution of an index
of high-dimensional feature vectors to multiple nodes. DISH builds on top of SHI by
partitioning posting lists across nodes in a balanced manner. Figure 5.2 provides an
overview of how the partitioning is performed: the set of h posting lists generated from
overcomplete hashes are partitioned across m nodes so that each node has h/m posting
lists. At query time, only nodes containing posting lists with non-null values (i.e., at most,
inspect s nodes, where s is the sparisty factor) are inspected. Not using the full set of nodes
is a fundamental property to prevent performance degradation when there are multiple
streams of queries being served simultaneously. The following sections detail the building
blocks behind our distributed index.

5.1.1 Redundant sharding by sparse hashing

Deciding how to partition documents across nodes is a critical challenge for every dis-
tributed indexing system. On high-dimensional media retrieval, documents are represented
as dense d-dimensional feature vectors. In their original form, dense feature vectors can-
not be easily partitioned by similarity, as the similarity must be measured across all the
feature vector dimensions. Partitioning these vectors randomly means that documents in
a partition are not required to share any degree of similarity. This means that all nodes
must be queried to get relevant results. The previous chapter showed that it is possible to
transform dense descriptors d dimensional vectors Y into sparse h dimensional vectors X,
with s non-zero coefficients, enabling:
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Algorithm 6 Distributed indexing algorithm (coordination node)
Input: a sparsifying dictionary D, a vector to index y and a set of proc. nodes N

1: x ← sparseApproximation(D,y) . Equation 2.10
2: NS ← balancedPartitioning(x,N) . Equation 5.3
3: for Ng in NS do . in parallel
4: intraNodeInd(Ng,x,y)

• similarity-based grouping: documents that share non-null coefficients positions have
higher degrees of similarity on the original space;

• redundancy: by selecting multiple, non-null coefficients per document.

The indexing is described on Algorithm 6. For each vector to index, coordinator node
extracts its sparse representation x, line 1 and selects the relevant nodes NS (at most s
nodes). The coordinator node sends then the indexing request to these nodes, line 4.

The following section details why the number of nodes to index NS is not always equal
to s and how to estimate its true value.

5.1.2 Sparse indexing collisions vs redundancy

Sparse hashing assigns each document to at most s posting lists; as we are distributing
posting lists across nodes, each document will be assigned to, at most s nodes. But, as the
hash size h is designed to be two orders of magnitude larger than m, there is a non-zero
probability of collisions, where a document will be indexed on more than one posting
list for a node. The redundancy factor r̂, i.e., the expected percentage of nodes where
a document will be indexed, must take into account the number of collisions. Thus, the
redundancy factor can be computed as a variation of the hash collision problem, where we
want to compute the expected unique number of nodes, including collisions:

r̂ = 1−
(

1− 1
m

)s

(5.1)

The proof for this expression is available in Appendix C. This equation is key to measure
the expected redundancy properties for a distributed index (e.g., select a s value that will
assign documents to 10% of total nodes). As it only depends on the s sparsity factor
parameter, and the number of nodes m, it can provide a redundancy factor approximation
r̂, without the need for experimental hash distribution measurements. The experimental
redundancy factor r measures the percentage of nodes where a document is indexed, and
rm = r×m is the average number of nodes where documents are indexed. A document
with an r of 0.25 on a set of m = 32 nodes will be distributed across rm = 0.25× 32 = 8
nodes. Figure 5.3 shows how this effect for multiple values of s. As the number of nodes
m approaches the number of posting lists h, rm approaches s, Eq. 5.2.

rm≈ s, m→ h (5.2)
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Figure 5.3: Changing the sparsity coefficient s limits the number of nodes rm where each
document is indexed.

5.1.3 Balanced distributed indexes

A balanced distribution of documents across nodes ensures a more uniform usage of
computational resources. The sparse hash values provide inherent partitioning through
the concentration of document information into a small set of non-null hash coefficients.
Sparse hashing by itself cannot guarantee uniform posting list distribution. As it is grouping
documents by similarity, it can generate larger posting lists on principal directions with a
higher density of feature vectors on the original space.

To create a more uniformly balanced document distribution in the sparse hash space,
we balanced the total number of documents per node (i.e., the sum of the number of
documents on each posting list). The distribution process is performed at posting list
level. Pl[0,h) is the set of posting lists. h-dimensional hashes X are indexed in posting
lists corresponding to the s non-null hash coefficients: Xg → Plg, if Xg , 0 for g ∈ [0,h).
An effective partitioning scheme for balanced posting lists is to partition posting lists
uniformly across m nodes, assigning h/m consecutive posting lists to each node N . For a
node Ng∈[0,m):

Ng← Pl[h·g
m

, ... ,
h·(g+1)

m

)
X →Ng, if ∃Xb , 0, b ∈

[
h · g
m

, . . . ,
h · (g+ 1)

m

)
.

(5.3)

Formally, our goal is to minimize the absolute deviation of document distribution across
nodes. Consider the set of index nodes N[0,m) and the set of posting lists Pl[0,h). The
number of documents per node is obtained by the sum of the number of documents in
each posting list, pl ∈Ng. The exact number of documents per posting list Pl is unknown
at the start of the distribution process. Thus, we use an estimate, |P̂ l|, computed from a
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Algorithm 7 Balancing posting lists across nodes
Input: a set of h posting lists Pl, a set of m index nodes N
Output: set of nodes N̄

1: PlPerN ← h/m
2: P ← sortBySize(Pl)
3: N̄ ← ∅
4: for p in Pl do
5: N ← sortByOcup(N)
6: N0 ← N0 ∪ p
7: if |N0|= PlPerN then
8: N ← N −N0
9: N̄ ← N̄ ∪N0

small set of validation data,

docs(Ng) =
Ng∑
P l

|P̂ l|

arg min

 ∑
Ng∈N

|docs(N)− docs(Ng)|

 ,
subject to |Pl ∈Ng|= h/m,

(5.4)

where docs(N) is the average number of documents on each node.
Algorithm 7 solves this minimization problem, by distributing the larger posting lists

to the nodes with the fewest number of documents assigned thus far, while respecting the
restriction on having the same number of posting lists per node. It starts by computing
how many posting lists will be assigned to each node, PlPerN , line 1. Then it sorts
posting lists from largest to smallest, line 2. Then, for each posting list, it selects the node
with the least assigned documents and assigns that posting list to that node, line 6. When
a node reaches the limit in the number of assigned posting lists, line 7, it is removed from
the assignment set, line 8.

This process can be performed on posting lists created from either training, validation
or query log data, and will return the best possible distribution for the provided posting list
distribution, considering a fixed number of posting lists per node. The index distribution
can be adapted to fit seasonal patterns or large scale events that distort the search space
by using query log data, as shown by Jin et al. [51].

Figure 5.4 provides a visualization of balancing process: Posting lists are assigned to
nodes from largest to smallest. The top of the chart shows the first iteration: the largest
partition is assigned to any node, as they are all empty. Iterations 2 and 3 will assign
posting lists 2 and 3 to the remaining nodes. Iteration 4 shows the key balancing factor of
the algorithm: Node 3 has the least number of documents, meaning posting list 4 will be
assigned to that node. As the node already as the maximum number of allowed posting
list (h/m = 6/3), it is removed from the assignment process. The remaining iterations
assign the remaining partitions. The final partitioning is displayed at the bottom of the
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Figure 5.4: DISH posting list partitioning

figure: DISH can balance the total number of documents per node (11 documents in the
example), even in scenarios where there is a large gap in the number of documents per
posting list (e.g., 10 documents on the largest, 2 on the smallest).

Figure 5.5 shows how the DISH posting list distribution process compares with the
distribution performed using the "Original" order returned by SHI, by a "Shuffled" posting
list assignment where posting lists are shuffled and assigned to nodes sequentially. DISH
posting list distribution can achieve a difference between the number of documents per
node in the order of the thousands: the number of documents on nodes varied between
142,842,564 and 142,843,476. These results are very positive when compared to the
"Shuffled" assignment (between 198,746,876 and 118,692,036 documents per node), where
the differences in document load are in the order of the dozens of millions.

The DISH partitioning process gives our index the flexibility to support any m number
of index nodes and sparsity factor s at run-time, without changing the hash size h or
affecting the experimental redundancy factor r. Our index allows changing the number

71



CHAPTER 5. SHARDING VERY LARGE-SCALE MULTIMODAL
INDEXES

1 4 8 12 16 20 24 28 32

Nodes

0

1

2

3

4

5

6

7

N
u
m

b
e
r 

o
f 

d
o
cu

m
e
n
ts

1e8

Original Shuffled DISH

Figure 5.5: Comparison of posting list partitioning methods. "Original" represents par-
titioning nodes according to the order of returned by the KSVD dictionary, "Shuffled"
represents an algorithm that shuffles the order of the posting lists before distribution and
"DISH" represents the DISH’s greedy partitioning process.

of index nodes, as it can re-balance posting lists across nodes by reordering the posting
lists. This technique also works if the number of indexed documents unexpectedly varies
across lists. Flexibility is also achieved by having different sparsity factors s at indexing
and query time. For example, one can have a higher s at indexing time and have higher
redundancy and a lower s at retrieval time, for faster search (inspecting fewer nodes).

5.1.4 Distributed retrieval

The distributed retrieval procedure addresses two constraints: i) minimize the number of
nodes deployed to answer one single query and ii) explore DISH’s partitioning redundancy
properties to reduce the number of candidates to inspect.

5.1.4.1 Retrieval coordination and rank aggregation

By querying fewer nodes per query, one reduces network communication, can handle a
higher amount of concurrent queries and improves the index vulnerability to hardware
failures. Our goal is to be efficient by querying only nodes with potentially relevant
documents. To meet our efficiency goal, we take advantage of the index inherent data
partitioning and intra-node limited candidate selection.

Algorithm 8 details the querying process from the coordinator node point of view.
First, the sparse hash is computed for the query. The coordinator node runs the sharding
process, line 2 and queries the selected nodes, line 5. The final step of the retrieval process
is to collect the partial candidate lists from the index nodes and combine them into the
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Algorithm 8 Distributed retrieval (coordination node)
Input: a sparsifying dictionary D, a query vector y, the number of neighbors to retrieve

k, a pruning factor pf and a set of index nodes N
Output: a list of k nearest neighbors C.

1: x ← sparseApproximation(D,y) . Eq. 2.10
2: NS ← balancedPartitioning(x,N) . Eq. 5.3
3: C ← ∅
4: for Ng in NS do . in parallel
5: Cg ← intraNodeRet(Ng,x,D,pf,k)
6: C ← C ∪Cg . Alg. 5
7: C ← reduce(C) . Perform final sort by l2 dist to the query
8: return C1,...,k

final rank, line 7. As the lists are already sorted and pruned in the index nodes, the
coordinator node only needs to sort a small number of candidates (at most k · s).

The retrieval operation on line 5 is blocking; the coordinator node waits for the results
from all selected index nodes. To avoid blocking the querying process due to the lack of
response from an index node (e.g., lost packages, nodes crashing), we set a timeout for
that operation: if an index node does not answer in a set time (dependent on the expected
query time, but usually in the order of 10− 100 ms), the fusion procedure continues with
the partial results gathered from the remaining nodes. Due to the inbuilt redundancy of
the distribution algorithm, the impact on retrieval performance is small (see Section 5.2.6
experiments for details).

5.1.4.2 Intra-node index pruning

Pruning the number of inspected candidates is an important process for fast indexes in
general and even more critical for multimedia retrieval. The rationale is that by examining
only documents with a high probability of similarity to the query, one can reduce the
overall computational complexity. Inspired by text indexes, we implemented two types of
pruning factors, pf[0,...h], to select how many candidates will be re-ranked for each posting
list, on an index I with n documents. The first strategy uses a fixed number of documents
to re-rank the same number of documents across all posting lists and similar candidate
re-raking across nodes:

Fixed: pf ∈ [1,n] : pf[0,...h] = pf. (5.5)

The second strategy uses a variable number of documents corresponding to a percentage
of the length of the posting list pfi, based on the value of hash Xi for that posting list,
divided by the sum of all the values in the hash:

Hash-based: global pf ∈ [0,1] :

∀Xi∈[0,...h]→ pfi∈[0,...h] = (pf ·n)(Xi/sum(X))
(5.6)
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The rational behind the hash-based pf is in-line with the greedy nature of the OMP
sparse hash computation: the node with higher coefficients, contains more correct nearest
neighbors. This removes the need for the coordinator node to know the index node
occupation state. Note that the computed pruning factors are maximum values: if a
posting list has fewer elements than the factors, only those elements are inspected (it does
not "overflow" to other postings lists). This factor is key to explain the results of the
posting list inspection experiments in Section 5.2.3.

The sparse hashes provide a sound, redundant partitioning of the index. The same
vectors are indexed in multiple partitions and each partition stores similar vectors. Thus,
pruning the index delivers important gains that can be further leveraged by state-of-the-
art algorithms for single node search (e.g., [11, 49]), without any changes to the index
redundant partitioning, balancing and aggregation procedures.

5.1.5 Computational complexity

This section describes the complexity of the retrieval process, in terms of the number of
documents required in the index to inspect per query per node and the amount of main
memory (RAM) necessary to store the inverted index and vectors.

5.1.5.1 Retrieval complexity

Considering a set of n, d-dimensional vectors, the original nearest neighbor problem has a
theoretical computational complexity of O(n ·d). Methods based on Hamming embeddings
(e.g. [44, 47, 61]), greatly reduce the dimensionality resulting on the computational
complexity O( d

f ·n), where f is the dimensionality reducing factor (it is common to reduce
300 dimensional real-valued vectors into 64 bit dimensional vectors). Approaches based
on space-partitioning techniques (e.g. [48, 49, 54]) tackle the dimensionality factor n.

Our approach is to distribute the index acrossm nodes and prune the search inside each
node by a factor pf ∈ [0,1]. For a fixed pruning factor fixedpf , it can be approximated
by dividing by the index size and multiplying by the sparsity factor pf = (fixedpf × s)/n
Thus, the computational complexity can be unrolled into O((pf ·n) · ( d

m)). When we
consider the redundancy factor that is embedded in our method as the sparsity factor, the
computational complexity is:

O

(
(pf ·n) ·

(
r

m
· d
))

(5.7)

with r
m < 1 and pf < 1. The proposed method can effectively distribute the search load

across nodes with a known redundancy r. The complexity arising from the factor n is
dependent on the intra-node retrieval method used on the index nodes.

5.1.5.2 Main memory complexity

The main memory requirements can be divided into two parts: the inverted index structure
and the original space feature vectors. For the inverted index structure, one needs to store
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Figure 5.6: Overview for the DISH evaluation process: each diagram emphasizes which
component of the architecture is being evaluated.

a four byte id and a four byte float coefficient for each index entry. Due to the sparsity
factor, the number of inverted index entries per feature vector is s, and thus the final
number of is 2 ·n · s. Regarding the indexed documents, each node must store the vectors
that are stored with its inverted index partitions. As the redundancy factor provides the
expected number of nodes a document a document will be index in, the complexity is n·r ·d.
Note that for the feature vectors, the exact memory requirements depend on whether the
features can be represents as a short with one byte per entry (e.g., SIFT) or floats, four
bytes per entry (e.g., GIST). Thus, considering that the index is distributed across m
nodes, the final main memory requirements are:

n · r · d+n · s · 2
m

(5.8)

5.2 Experiments

This section evaluates the performance of DISH on a multi-tenant cloud environment, under
multiple conditions. We start by analyzing DISH efficiency in section 5.2.4, Figure 5.6
(a), and examine how balanced our querying distribution is, and how query distribution
changes with the number of nodes. Section 5.2.5 assesses the performance impact of
answering multiple concurrent query streams, Figure 5.6 (b). Experiments concerning how
node failures affect retrieval performance are reported on section 5.2.6, Figure 5.6 (c).

5.2.1 Baselines

Inspired by content-based distributed text indexes such as [56], we adapted k-means to com-
pute sparse hashes. K-means is an adequate baseline, as it provides comparable retrieval
performance to state-of-the-art indexing techniques based on clustering or quantization
such as [50], which use k-means as a key part of the partitioning process.

The basic idea is to generate hashes based on the distances of original feature vectors
to the set of s closest centroids (soft clustering). The process of using k-means to extract
sparse hashes is as follows:
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• compute a set of h centroids, based on the same training data as with sparse hashes
using k-means++ [7];

• compute h-dimensional sparse hashes x with s non-null positions, corresponding to
the s closest centroids in the Euclidean space.

The remaining hash positions have the value of zero. This process replaces the sparseAp-
proximation step in Algorithms 6 and 8. Both k-means and KSVD can have the same hash
size h: in k-means corresponds to the number of centroids and in KSVD to the number of
dictionary codewords.

Consider a set of cluster centroids C ∈R
n×d. Hash computation by clustering is based

on finding the set of closest centroids c ∈R
s×d ⊂ C, and assigns the Euclidean distances

to those centroids as the sparse vector values:

arg minc(‖ci− y‖2),

for ci∈[0,h] ∈ C,

with |c|= s

xi∈[0,h] =


‖ci− y‖2 , for ci ∈ c

0, otherwise

(5.9)

To find the set of centroids that best represent the feature space, three techniques were
selected: random sampling, k-means and fuzzy c-means. Alternative clustering techniques
such as DBSCAN do not allow setting the number of clusters and thus, do not meet the
desired properties.

Fuzzy c-means clustering [17] techniques extend the assignment of documents to clusters
and keep membership information to multiple clusters (e.g., ratio of the distance to the
centroids). As with k-means, these techniques minimize the sum of the document to
centroid distances, taking into account membership and cluster fuzziness information
(degree of overlap between clusters). In preliminary experiments, fuzzy c-means produced
very unbalanced clusters: all documents were assigned to only 20 clusters, regardless of the
total generated centroids. Due to this extreme unbalance, fuzzy c-means was not explored
further. k-means++[7] was used for initial seed centroid selection.

Using these centroids, h-dimensional (one for each centroid) hashes are computed so
that each hash x has s non-null positions, corresponding to the s closest centroids in the
Euclidean space. The remaining hash positions have the value of zero. Figure 5.7 illustrates
the k-means hash creation process on a two-dimensional space using a set of h= 5 centroids
and s = 2. Centroids are represented as colored squares, indexed points as colored dots,
matching the color of the centroid with the lowest distance and a new point is represented
as a grey dot. This process replaces the sparseApproximation step in Algorithms 6 and
8; The distributed indexing and retrieval are similar, with a small difference: as we are
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Figure 5.7: Fuzzy k-means indexing

dealing with distances instead of reconstruction coefficients, the posting list sort order is
reversed (i.e., documents with smaller distances to centroids are inspected first). On this
chapter experiments, s was set to 5, which gives a slight advantage to k-means over KSVD
that has a mean sparsity of 4.32.

5.2.2 Experimental setup

Machines: all nodes are virtual machine (VM) instances on Microsoft Azure. The VM
host machine controls resource scheduling (e.g., CPU, network, storage), some of which
may be shared with unrelated VMs. Both index and coordinator nodes are Microsoft Azure
Standard D12 virtual machines1, with four virtual cores (2.2 GHz Intel Xeon E5-2660), 28
GB memory and a 200 GB Local SSD (as of July 2017). All coordination and index nodes
were allocated individual virtual machines; each machine uses four threads (one per core)
for sending querying requests to index nodes (coordination nodes) and for index candidate
inspection (index nodes).

Network: all nodes were in the same zone/datacenter (US East 2), connected to a 10
Gbps network, with sub 1 ms latency between nodes. Communication between nodes is
made through UDP using a custom, low overhead binary protocol to send query requests
between coordination and index nodes and send the sorted candidate nearest neighbours
between the index and coordination nodes. During our experiments, we did not observe
any package loss.

Datasets: the ANN dataset [48, 49], contains over one billion SIFT feature vectors,
section 2.6.4. It was designed to evaluate the quality of nearest neighbors search algorithm
on very large scales. We used the first 1000 vectors from the query set of queries on all
non-concurrent experiments. In the concurrent query stream experiments, each query

1https://azure.microsoft.com/en-us/pricing/details/virtual-machines/series/
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stream uses a set of 1000 queries randomly selected from the full 10,000 query set. We
used a subset of 100,000 of the provided training vectors to compute the K-SVD dictionary
and k-means centroids.

This setup follows the standard data splits for the ANN dataset but we measure
avgP@50 (i.e., percentage of the true set of 50 nearest neighbours that are present in the
top 50 positions of the rank list produced) instead of 1-Recall@1000 (percentage of times
the true nearest neighbour is present on the top 1000 positions of the rank list produced).
Our reasoning is P@50 can measure the distribution of the top true 50 nearest, instead of
the top true nearest neighbour of 1-Recall@1000, which is in line with the goal of a search
engine that aims at retrieving multiple relevant results for each query.

Metrics: the metrics used in the evaluation are rooted in both retrieval and distributed
systems literature [42, 96, 97]. We measured average query time as the time it takes
for the aggregator node receiving the query request, and returning the list of nearest
neighbors, which corresponds to Algorithm 8. For retrieval effectiveness, we measured
average precision at k:

avgP@k = 1
nq

∑nq
n=1,

|Tn,[1,k]∩Cn,[1,k]|
k , (5.10)

where Ti is the set of true nearest neighbors and Ci is the set of retrieved neighbors for a
query i and nq is the number of queries. Node load is defined as the percentage of time
a number of index nodes were being queried, over the time it took to answer all queries.
For example, on a two-index node system, a node load of 30% on one node and 70% on
two nodes, means that one of the nodes was answering a query for 30% of total time, and
on the remaining 70% of the time, both nodes were answering a query.

Bulk indexing details: the indexing is divided into four stages: first, feature vectors are
extracted from the documents; second, a dictionary is computed from training documents;
third, sparse hashes are generated using the computed dictionary (2 ms per document)
and placed at the corresponding posting list. Then, for each posting list, we sort them
according to the hash coefficient value. The indexing process was performed on a 12-core
Intel i7 machine with 64 GB of RAM. The dictionary training took approximately 8 hours
for a 100,000 set of training feature vectors. Sparse hash extraction, posting list indexing,
and sorting take about 48 hours for a 1 billion document index. Posting lists are stored
into a centralized network data store on Azure. For each experiment, they are divided
across nodes using the order returned by the posting list balancing algorithm, Alg. 7.

Parameters: Parameters were selected to measure the impact of the distribution over-
head of DISH sharding process. We set a hash size h of 8192 for both methods, a sparsity
factor s of 4.32 for DISH and 5 for k-means. The number of posting lists per node depends
on the number of index nodes m: 8192 / m.
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Figure 5.8: Posting list search effectiveness: Precision vs. percentage of index inspected

5.2.3 Precision vs. index inspection efficiency

The goal of the sparse hash index is to group similar documents into the same posting lists.
At retrieval time, one must find the balance between precision and inspection efficiency.
The goal of the following experiments is to establish the precision of the system and
measure how it is affected by the % of the index inspected. Experiments were performed
on an environment with 32 index nodes and one coordinator nodes and one billion vectors.
Note that the percentage of dataset inspection from Eq. 5.6, refers to the real inspected
percentage meaning that it will be lower than requested, as the posting lists may be smaller
than the requested limit.

Figures 5.8 show the comparative results. These results show that, for both types of
limits, we achieved an average P@50 of 50%, while inspecting less than 0.6% of the dataset
(less than 6 million documents). For the tested limits, hash-based inspection is more
efficient (inspects fewer documents for equivalent precision) that using a fixed limit. The
effect is more clear at lower limits. This means that the magnitude of the hash coefficient
is an important factor for candidate selection. As a result of this experiment, we used the
hash-based criterion to limit the posting list inspection depth.

This experiment shows the retrieval effectiveness of the sparse hash index for multiple
degrees of index inspection. The index node query time is tied to the percentage of the
index inspected. The goal of DISH is to balance the size of the index of partitions across
index nodes, so that inspection load is better distributed across nodes. The following
experiments show how the search process is affected by the distribution of the index to
multiple nodes.
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Table 5.1: Impact of number of index nodes and index size on DISH overhead.

Query dist. overhead
(ms. per query)

Index
size

Dist.
size

# of
nodes

DISH
part.

Commu-
nication

Aggre-
gation

Total
time

50M 229M 2 3.766 0.109 0.005 3.880
50M 229M 4 3.308 0.108 0.007 3.423
50M 229M 8 3.219 0.103 0.010 3.332
50M 229M 16 3.342 0.104 0.014 3.460
50M 229M 32 3.064 0.104 0.011 3.179

100M 457M 2 4.202 0.113 0.004 4.319
100M 457M 4 4.131 0.124 0.007 4.262
100M 457M 8 4.143 0.126 0.009 4.278
100M 457M 16 4.144 0.131 0.010 4.285
100M 457M 32 4.209 0.136 0.011 4.356

1000M 4571M 32 4.414 0.197 0.012 4.623
1000M 4571M 64 4.744 0.201 0.016 4.961

5.2.4 Index partitioning analysis

DISH partitioning is the process of sparse hash computation and assignment to index
nodes by the coordinator nodes, described on section 5.1.1. We first examined the impact
of the number of documents and the number of nodes in the partitioning of the index,
Figure 5.6 (a).

Balanced document-to-node allocation. The goal of this experiment is to measure DISH
balancing properties for documents, Algorithm 7, for varying amounts of index nodes. The
total number of feature vectors on the index is 1 billion. The index was distributed across 32
nodes. The document-to-node allocation follows a close to uniform distribution: differences
between nodes’ occupation are in the order of the few thousands: the number of documents
on DISH varied between 142,842,564 and 142,843,476 (mean value: 142,843,085). For k-
means, it varied between 156,249,993 and 156,250,005 (mean value: 156,250,000), Note
that these values take the redundancy factor into account.

Index redundancy. Table 5.1 shows the impact of the number of index nodes (2 to
64) and index size (50M, 100M and 1000M) on the DISH process. The distributed index
size (dist. size) column illustrates the index redundancy; i.e., documents are indexed on
average on 4.5 index nodes, hence, increasing the redundancy and robustness of the index.
Although having a larger index may seem like a potential disadvantage of our partitioning
scheme, we argue that it has the potential to reduce the need for additional replication by
node duplication. The node failure analysis in section 5.2.6 will expose this advantage of
the proposed method.

Table 5.2 further explores the impact of the number of index nodes m on the index
redundancy factor r, and compares it to the expected value r̂. For the queries, the value
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Table 5.2: Measured and expected redundancy factor for the queries. rm is computing by
multiplying the measured redundancy percentage r with the (varying) number nodes m.
The number of partitions per document is fixed.

m= # of nodes 2 4 8 16 32 64

DISH
rm 1.90 2.92 3.68 4.16 4.48 4.48
r 0.95 0.73 0.46 0.26 0.14 0.07
r̂ 0.96 0.74 0.46 0.26 0.14 0.07

k-means
rm 1.94 3.12 3.92 4.48 4.80 4.93
r 0.97 0.78 0.49 0.28 0.15 0.08
r̂ 0.97 0.76 0.49 0.28 0.15 0.08

r means the difference between the expected and measured number of nodes to query.
The sparsity factor was squery = 4.65 for DISH and squery = 5 for k-means. For a small
number of nodes, e.g., 2 or 4, the redundancy factor is limited by the total number of
nodes, meaning that most documents will be placed on all nodes. For larger values, the
redundancy factor approaches the value of squery. The table shows that the r values are
in line with the expected values computed from Equation 5.1. This shows that queries are
being distributed across nodes according to our redundancy predictions.

Overhead. The communication time corresponds to the time sending queries and
receiving results from index nodes, and the aggregation time corresponds to the time
to combine and sort candidate nearest neighbors from the index nodes. The per-query
coordination time is within a small range (3-5 ms) over all index node and index sizes.
Section 5.2.5 will further analyze the DISH overhead in the presence of multiple query
streams.

Balanced query allocation. Figure 5.9 shows the number of queries assigned to each
node. The X-axis shows the node id, sorted from least to more queries answered and the
Y-axis shows the percentage of queries that were assigned to the node. Query balancing is
also good: each node answers 14.5% of all queries on average, with a maximum difference
of less than a 4% in load between nodes (between 12.4% and 16.3% of queries). k-means
achieves very similar results for single stream balancing.

The next step is to examine how changing the number of index nodes affects the balance
of the querying process. In Figure 5.10, each chart corresponds to a fixed number of index
nodes (8, 16, 32). The X-axis shows the number of nodes that were queried; the size of
the axis is the total number of nodes in the experiment. The Y-axis shows the % of the
experiment time where a number of nodes were busy answering questions. For example,
the eight index node chart shows that, for the 1000 tested queries, four index nodes had
to be queried for about 30 % of the time and six index nodes had to be queried for about
10% of the time. As expected, as one adds more index nodes, the number of nodes queried
increases slightly. For 32 index nodes, the coordinator node queries, at most, seven nodes
(about 20% of total nodes).
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Figure 5.9: Percentage of total queries assigned to each index node (32 index nodes)
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Figure 5.10: Distribution of the number of nodes queried as a percentage of total query
time, for multiple numbers of index nodes.

On DISH, the average number of nodes being queried increases from 3 to 5 when the
number of indexer nodes grows from 8 to 32. For k-means, the change in the number of
queried nodes varies less (4 to 5).

The variance in number of nodes queries being queried at a time is lower on k-means (i.e.,
stays closer to the average) than on DISH. In addition, a higher variance in the percentage
of total nodes queried per query (as with DISH) can be beneficial for concurrent querying
(e.g., lower potential bottlenecks on more popular nodes). The following section details
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Table 5.3: Concurrent query streaming results: time and performance relative to a single
query stream.

# Query
streams

Query distribution overhead (ms)
DISH k-means

1 4.62 1.55
2 5.15 1.59
4 5.17 1.59
8 5.12 1.58
16 5.32 1.56

how these factors impact an index answering up 16 concurrent query streams.

5.2.5 Concurrent query streams analysis

Indexes deployed on real-world situations must work in environments where queries are
issued concurrently. An often overlooked, but key experiment, is how media indexes deal
with answering multiple streams of queries concurrently. In this experiment, we tested how
having multiple concurrent query streams (1, 2, 4, 8, 16) affects the performance of the
DISH index, which corresponds to Figure 5.6 (b) scenario. The number of index nodes is
fixed at 32. Note that retrieval accuracy (e.g., avgP@50) does not change with the number
of concurrent queries, as the candidate documents examined during the querying process
are the same.

Table 5.3 shows how DISH behaves on a situation where a set of index nodes being
queried by multiple coordinator nodes concurrently. The DISH column shows the time
the coordinator node takes to compute the hash (section 5.1.1), query the index nodes
and aggregate the results (algorithm 8). The total query relative time depicts the relative
slowdown over a single query stream. On the times for the DISH column, we see that mul-
tiple query streams have little effect on the time taken by the distribution and aggregation
process. Increasing the number of concurrent query processes from 1 to 16 only increases
the average DISH time from 4.62 to 5.32 ms. Regarding global retrieval time, it is only
0.99x slower answering 16 query streams vs. answering a single query stream. k-means
sharding time is lower than DISH, but the global query time grows faster with more query
streams (Total relative time). These results show that DISH distribution overhead does
not increase significantly with the number of parallel query streams.

This is due to the system’s efficiency, as described in section 5.2.4: only nodes where a
non-zero coefficient matches their posting lists are queried. Combined with the balancing
between hash size and the number of nodes (256 posting lists per node), the probability
of querying a node is even lower (worst case scenario, only one node is queried) and thus,
performing multiple queries in parallel will result in fewer collisions.

Figure 5.11 details the load-balancing across index nodes under concurrent query
streams for DISH and k-means. The X and Y-axis are similar to those of Figure 5.10, but
each chart corresponds to a different number of query streams (1, 2, 4, 8, 16). Each query
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Figure 5.11: Distribution of the number of nodes queried as a percentage of total query
time for multiple query streams. Each chart represents a different number of streams (1,
2, 4, 8, 16).

streams injected 1000 queries. Looking at the index nodes load with one query stream,
Figure 5.11) top row, we can see that the most index nodes are largely unused. This is
the result of the sparse hashing technique that only uses a few dimensions of the hash.
When the number of concurrent streams increases, the probability of using more nodes
increases, resulting in a higher occupation rate of the full set of index nodes. For 16 query
streams, the mean number of occupied nodes is 28.5 nodes, reaching its maximum (32
nodes occupation) a non-negligible percentage of the time (≈ 3%). When compared with
k-means, DISH can spread the load more across nodes. The effect is more evident in the
16 stream experiment, where k-means queries the same amount of nodes as with the eight
stream experiment, which leads to a larger concentration on load on nodes when compared
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Figure 5.12: Avg. precision on index node failures.

to DISH.

5.2.6 Resilience to index node failure

When working in a distributed environment, node and network failure risk increase sig-
nificantly with scale. Our sharding scheme implicitly offers redundancy, by computing
sparse hashes with over-complete dictionaries. KSVD dictionaries offer an overcomplete,
orthogonal view of the original feature space, meaning that document features will be
distributed across multiple nodes, according to the sparsity coefficients.

The goal of this experiment is to measure the impact of those missing nodes on retrieval
precision, Figure 5.6 (c). The importance of this measurement is two-fold: assess the
resiliency of our redundant index partitioning scheme to node or network failures, and
measure what would happen if one would voluntarily not query nodes (e.g., node load too
high). Figure 5.12 shows the average precision loss in a situation where the coordinator node
does not get a response from one or more nodes. The X-axis represents the number of nodes
that did not return results, between 0 (all nodes returned results) and 32 (no nodes returned
results). The Y-axis represents the avgP@50. The DISH B(est) baseline represents the
best case scenario, where the worst global performing node (regarding average precision
for all queries) goes down; the DISH W(orse) baseline represents a situation where the
best global performing node goes down. DISH and k-means series represents what happens
when a random node goes down for DISH and k-means respectively.

As we start to query fewer nodes, the precision of DISH is higher than k-means. This
experiment also shows that losing a few nodes does not have a considerable impact on
performance. The loss of one node only results in an average P@50 decrease of 2%. The
figure also highlights that the differences between the DISH Best and DISH Worse case
series are between 10% to 15%, which corresponds to the impact of the order in which
individual nodes go down.

The current version of the intra-node index pruning is based on a linear search across
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index shards. A more efficient index node pruning would be able to inspect more candidates
in a similar time frame, improving precision.
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Figure 5.13: Query time speedup with the number of nodes, for multiple degrees of index
inspection. rm is computing by multiplying the measured redundancy percentage r with
the (varying) number nodes m. The number of partitions per document is fixed.

5.2.7 Performance limits

In this section we examine the limits beyond which adding more indexing nodes brings no
further improvements. Namely, the fine trade-off between indexes resiliency to node failure
and retrieval speedup when one changes the index redundancy factor. Redundancy also has
an impact on the distributed index speedup. For too high redundancy factor values, the
speedup is sacrificed, because index nodes have too many duplicate documents. However,
lowering the index redundancy factor r will release more index nodes to quickly answer
incoming queries, thus resulting in a speedup increase.

The following experiments analyze the break-even points for the redundancy factor
and inspection depth.

Redundancy factor. In this experiment, we varied the redundancy factor by changing
the number of nodes m and fixing the sparsity coefficient to 4. Figure 5.13 examines this
behavior: it shows the impact of changing the redundancy factor, i.e., number of index
nodes, in the retrieval speedup for a 100M document indexes. The Y-axis represents the
speedup compared to searching on two index nodes m. The X-axis represents the total
number of index nodes (m). Each series represent a different % of index inspection, 0.01%,
0.1%, 0.5% and 1.0%.

As expected, the effect of adding more nodes is more pronounced for higher % of index
inspections, reaching a speedup of 1.83× for a redundancy factor of 0.14 (i.e., there are 32
nodes, but each query is served on average by 4.48 nodes). For lower inspection depths,
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Figure 5.14: Query time speedup with multiple degrees of index inspection for multiple
node counts.

e.g., 0.01%, distributing the index to 32 nodes resulted in a decrease in performance; we
hypothesize that the increase in index distribution time was higher than the time gained
from having more indexing nodes inspecting partitions.

The smaller gains in performance for higher numbers of nodes are linked to the rm
factor: as the number of nodes per document rm approaches the sparsity factor s, (in this
experiment, m> 8), adding more nodes to the index results in an increase in resilience to
node failure (higher rm). Improvements on speedup are strongly related to the sparsity
factor, which is fixed in this experiment. For a single query stream, the improvements
in performance only happen while its posting lists that are placed on a single node are
distributed to these new nodes. Adding more nodes can improve performance scenarios
with multiple queries such as the ones described in Section 5.2.5.

Inspection depth break-even. The index inspection depth has a high impact on the
speedup. Intuition tells us that for shallow inspection depths, the distribution overhead is
too high, thus canceling the advantage of having a distributed index. Figure 5.14 gives a
different perspective of the impact of changing the number of index nodes and % of index
inspection. As with the previous experiment, the Y-axis represents the speedup compared
to searching on two index nodes. The X-axis represents the % of index inspection. Each
series represents a different number of index nodes.

This experiment shows that the % of index inspection has a significant impact on
distributed retrieval performance: for search limits below 0.003%, distributing the index
to more nodes results in a degradation in temporal performance (speedup < 1). For such
low limits, the extra index partitioning overhead is greater than the gains in candidate
inspections from having more nodes. Thus, the larger number of index nodes only brings
benefits when inspecting larger % of the index.
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5.3 Conclusion

This chapter described DISH, a large-scale index sharding algorithm by sparse-hashing,
designed for the cloud. We showed how sparse hashes can be used to shard documents
and queries in a balanced and redundant manner across nodes. We studied how to predict
the impact of distributing hashes over multiple nodes on the expected redundancy, based
on the hash collision problem, providing experimental results that show that DISH closely
follows the expected distribution.

The evaluation section shows that DISH has low sharding overhead and distributes
load effectively across nodes when under 16 concurrent query streams. Moreover, we
also observed a graceful performance degradation on node failure (2% precision loss per
node failure), which is a significant advantage on cloud environments where high-latency
machines are a hindrance.

However, balancing documents across nodes, Figure 5.5 is not the same as balancing the
search space distribution. DISH retrieval process is still limited by nodes that have larger
partitions, as they inspect a larger number of candidate nearest neighbors, as described in
Section 5.1.4.2. This problem is amplified by parallel query stream scenarios, Section 5.2.5:
load balancing becomes less effective if multiple queries are assigned the same large posting
list. The following chapter shows how we can reduce the differences between the posting
list sizes and maintain similarity-based index by improving the sparse hash computation
process.
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Balancing distributed index partit ions

Effective multimedia index partitioning is key for efficient k-NN search. However, exist-
ing algorithms are based on document similarity, without partition size or redundancy
constraints. As KSVD’s goal is to find the principal directions of data in the original
space, the posting lists that correspond to the first directions will have more documents.
DISH balancing works on KSVD-based indexes by grouping larger and smaller posting lists
together so that each node has the same number of documents (i.e., the sum of documents
from all posting lists).

This unbalance becomes a problem when partitions are distributed across multiple
nodes: at retrieval time, nodes with the larger posting lists will still spend more time on
candidate selection, as the number of candidates to inspect is tied to the pruning factor.
The question becomes is it possible to balance the number of documents across posting lists
without a negative impact on retrieval effectiveness?

Figure 6.1 illustrates the difference between balancing at node level and balancing at
posting list level. For an unbalanced system, the number of documents may vary greatly
across nodes and partitions. In Chapter 5, DISH can achieve a balanced distribution
of documents across nodes, for algorithms that generate posting lists with very large
differences in size. This chapter proposes balancing the distribution of documents at both
posting list and node level.

The main contribution of this paper is the B-KSVD algorithm which balances the
allocation of documents across an adjustable number of dictionary atoms. It was designed
to address the even distribution of data across atoms to achieve better load-balancing
when allocating data to nodes while maintaining KSVD’s key property of grouping similar
documents the same partitions. B-KSVD works by reducing the magnitude of dictionary
atoms that have more documents assigned.
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Figure 6.1: Expected distribution of the number of documents across nodes and partitions,
for multiple document balancing techniques.

The remainder of this chapter is organized as follows: Section 6.1 formalizes overcom-
plete redundant partitioning and details the proposed solutions. Section 6.2 describes and
discusses the experiments and section 6.4 contains the conclusions.

6.1 Space Partitioning Codebooks

Existing works are designed for similarity-based partitioning or on pure load balancing,
with little overlap. Figure 6.2 illustrates how unbalanced partition sizes can become
a problem during retrieval (top of the figure). The top of the figure shows an index
created using DISH with a KSVD dictionary. The bottom of the figure shows an index
created using DISH using a dictionary that generates posting lists with more uniform
sizes, which leads to smaller differences in load across nodes. Balancing partition sizes
while preserving similarity may appear contradictory: if the data on a given space is not
uniformly distributed, how can one guarantee a fair partitioning of space in both the densely
and sparsely populated regions?

This chapter proposes the incorporation of partition size balancing and redundancy at
codebook level. An index composed of balanced, redundant partitions enables a flexible
distributed retrieval process. Inspecting multiple partitions leads to incremental retrieval
performance increases. Conversely, not inspecting a partition (e.g., node failure), should
result in a small retrieval performance loss, instead of no results returned. Another
important factor is how does a distributed retrieval system deal with parallel query streams.
On use-cases with more query streams, having more uniformly sized partitions is beneficial:
queries will be distributed across more partitions, and uniform partition sizes guarantee
that the expected partition inspection time is more uniform. To create representations
that fit this paradigm, the following properties were identified:

• generate partitions that group documents that are similar in the original space;
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Figure 6.2: DISH index partitioning with KSVD (top) and the proposed method, B-
KSVD (bottom). Gray squares represent candidate documents to inspected under a 55%
per-partition pruning factor.

• generate evenly sized partitions.

• setting a fixed atom over completeness, i.e., sparsity factor;

• compute partition membership magnitude (e.g., distance to centroid, reconstruction
weight) to allow candidate selection inside partitions;

Formally, consider the original vector y ∈ R
n, a sparse vector x ∈ R

h and a sparsity
coefficient s. From a set of m, n-dimensional vectors in the original space as Y ∈ R

m,n,
the goal is to find a function f that transforms them into h-dimensional sparse vectors as
X ∈R

m,h:
f(y) = x,

where ‖x‖0 = s and s� n� h.
(6.1)

‖...‖0 is the l0 pseudo-norm: the sparse vector x must have exactly s non-zero values/-
coefficients. Forcing sparsity to be equal to the sparsity factor s, instead of the gen-
eral constraint of smaller or equal, ensures that each document will be placed exactly
on s partitions. For a set of vectors ya,yb,yc ∈ R

n and corresponding sparse vectors
f(ya) = xa,f(yb) = xb,f(yc) = xc ∈ R

h, the goal is to generate sparse vectors with the
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following property:

if ‖ya− yb‖2 < ‖ya− yc‖2 then

‖xa +xb‖0 < ‖xa +xc‖0
(6.2)

In the above expression, Equation 6.2, vectors that are close in the original space have
non-zero coefficients on similar positions in the sparse vector space than vectors that are
further apart. Sparse vectors are the basis to generate a set of partitions P , p ∈ P ⊂ Y .
Each sparse vector position corresponds to a partition, and the value at that vector position
quantifies the "membership magnitude" to the partition. This chapter’s balancing goal is
to minimize the differences in partition sizes:

|pa| − |pb| ,∀pa,pb ∈ P. (6.3)

The previous chapter identified and tested two families of methods that have the
potential to meet the desired properties: sparse coding and clustering. Sparse coding
techniques are designed to generate overcomplete representations of the search space: the
reasoning is that codebook atoms can act as the basis of the partitions. For clustering
techniques, centroids and distance to centroids act as codebook and atoms respectively,
using soft clustering for redundant partitioning. The following sections detail how they
were applied for balanced sparse hash computation.

6.1.1 Codebooks by sparse hashing

Sparse vectors can be high dimensional sparse hashes, generated using a codebook repre-
sentative of the original space. Sparse hashes offer some advantages over binary hashes
for search space partitioning: sparse coding techniques are designed to be overcomplete,
real-valued membership (i.e., representative values on the non-null dimensions of the
sparse hash) and control over the sparsity of the solution and thus, redundancy. Another
advantage is that these techniques work on non-uniform or unbalanced feature spaces; code-
books are learned using feature-specific training data, meaning that they will always follow
document distribution. The effectiveness of distribution is not limited to feature orthogo-
nality: KSVD will index document on redundant non-orthogonal partitions, maintaining
similarity-based indexing guarantees. The sparse hash generation steps are:

• compute the dictionary/codebook D from training data;

• use D to create an hash with s non-zero coefficients and assign them to the corre-
sponding partitions;

• for search, inspect the s partitions corresponding to non-zero coefficients.
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The process for the generation of sparse hashes that follow Equation 6.1 goals, is to
solve the following optimization problem:

arg minx‖Dx− y‖2,

subject to

‖x‖0 = s

(6.4)

where D ∈ R
h×d is a dictionary, learned from the data, y ∈ R

d is the the original vector,
x ∈R

h is the sparse hash and s is the sparsity coefficient. Note that x was set to be equal
to s, instead of the usual smaller or equal requirement, which differs from the sparse hash
processing described in Section 4.2. This was to ensure that generated hashes respect the
redundancy goals (fixed number of partitions per document). Equation 6.4 generates a
hash with the desired properties, using a previously computed dictionary. Techniques for
dictionary computation include KSVD [2] and Stochastic Gradient Descent techniques.

6.1.1.1 KSVD and OMP

Equation 6.4 shows how to generate a sparse hash x for a vector y, based on an (existing)
dictionary D. Thus, one must first generate the dictionary D that adequately represents
documents in the original space. Computing the dictionary requires solving the following
optimization problem: find the dictionary D and set of sparse hashes X that minimizes
the reconstruction error against a set of vectors Y :

arg minD,X‖DX −Y ‖2,

subject to

‖x‖0 = s,

for x ∈X

(6.5)

where Y ∈R
n×d are the original document vectors, D ∈R

h×d is a dictionary, to be learned
from the data, X ∈R

h×n are the sparse hashes (one per column), x is a sparse hash vector
(column of X) and s is the sparsity coefficient.

As it was discused in section 4.2, solving for both D and X is NP-hard. KSVD alterna-
tively optimizes the solution for D and X. KSVD updates each dictionary atom iteratively
(represented by i), while fixing other atoms j[0,h] , i. By decomposing Equation 6.5 into
KSVD iterative process, one arrives at the following formulation, for the iteration where
the atom i is fixed:

arg minDi,(xi)I
‖Di(xi)I + (Ei)I −Y ‖2F

Ei =
∑

j[0,k],i

‖Djxj −Y ‖2F
(6.6)

where ‖...‖F is the Frobenius norm, and Ei is the reconstruction error for the (fixed) atoms,
j[0,h] , i. Sparsity is enforced by using only the dimensions with non-zero coefficients: I is
the set of all index with non-zero coefficients that use atom i for reconstruction.
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By fixing j atoms, the value for atom Di can be computed by finding a rank-1 matrix
approximation of Ei, Êi, and factorizing the result into Di and xi.

Êi =G
1∑
V T (6.7)

This decomposition will yield Di as the first column of G and xi as the first column of
V ×

∑1.

6.1.1.2 Balanced KSVD

KSVD enforces the creation of sparse representations that group similar vectors in the
original space on atoms with non-zero coefficients. When generating multiple sparse
hashes, KSVD will inherently create unbalanced representations, as the dictionary atoms
are biased towards the principal directions of the data on the original space. Babenko
and Lempitsky [11] already showed how relaxing orthogonality constraints reduces the
number of non-empty partitions. The goal is to take it further, and minimize the standard
deviation σ in the distribution of documents across partitions:

arg minD,X‖DX −Y ‖2 +σ(‖XT ‖0),

subject to

‖x‖0 = s,

for x ∈X

(6.8)

The transposed matrix XT combined with the l0 pseudo-norm as ‖XT ‖0, represents a
vector with h elements, containing the number of documents per atom. It contrasts with
the sparsity constraint ‖x‖0 ≤ s, for x ∈ X, which represents the number of atoms per
document. Thus, σ(‖XT ‖0) is the standard deviation in the number of documents per
partition.

To achieve this goal, B-KSVD reduces the magnitude of dictionary atoms that have
more documents assigned. Its alternate optimization process is similar to Equation 6.6;
balancing is applied to Equation 6.7’s E decomposition; after the rank-1 approximation,
the G matrix is multiplied by the penalty factor B:

balanced Êi =B×G
1∑
V T

B = 1(
‖XT
−1‖0 + r

)e

(6.9)

where X−1 represent the hashes computed using the previous iteration of the dictionary.
Therefore, ‖XT

−1‖0 is a h-dimensional vector, containing the number of documents assigned
to partitions on the previous iteration. This formulation matches the number of documents
per atom formulation of ‖XT ‖0, stated on Equation 6.8. e is the parameter to control
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the magnitude of the penalty, and r is a regularization factor to avoid division by zero
for partitions with zero documents. This penalty distorts the estimation of the dictionary
atoms, creating non-orthogonal balanced representations. The regularization parameters r
and s control the magnitude of this distortion, balancing between similarity-based indexing
and balanced partitions. Figure 6.3 shows what happens when applied to a two-dimensional
space. Dictionary atoms that match a large percentage of documents (e.g., red atom) have
their magnitudes reduced, and atoms that match few documents have their magnitudes
increased. This process distorts the hash space to create atoms that match the original
feature space.

KSVD dictionary Balanced KSVD dictionary

Change dictionary atom size 
and magnitude to better fit 

data distribution

Figure 6.3: B-KSVD dictionary distortion visualization

6.1.1.3 Random dictionary

The impact of dictionary learning on the computation of sparse hashes can also be measured
by using a random dictionary. OMP will compute sparse hashes using random atoms,
generated from the Gaussian distribution with zero mean and unit standard deviation.

D ∈R
h×d ⊂N(0,1) (6.10)

Random dictionaries show how OMP clusters data without prior search space information
from dictionary computation.

6.1.2 Codebooks by soft quantization

An alternative interpretation of the sparse vector computation process follows soft clus-
tering, where the cluster membership is controlled by a fixed s sparsity factor. Its focus
is to measure how well these clusters can represent neighboring data in a balanced way,
and how using multiple clusters affects the sparse vector computation process in a high
dimensional feature space.

6.1.2.1 k-means centroids

k-means is one the most widely applied clustering functions in nearest neighbor search. It
estimates a set of centroids C ∈R

h×d that minimizes the distances between the points to
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the centroids of their clusters. The k-means clustering process minimizes the following
expression:

arg minC

∑
ci∈C

∑
yj∈Pi

‖ci− yj‖2 (6.11)

where C ∈R
h×d is the set of cluster centroids, Pi, i ∈ [0,a] is the set of documents yj ∈ P

that are assigned to centroid Ci. The k-means initialization requires the selection of a set
of points as the initial centroids. k-means++ [7] was selected for centroid initialization,
as it selects points that give a good representation of the search space and lead to faster
convergence, on a large set of experiments and datasets.

6.1.2.2 Random centroids

A random sampling technique that selects a random set of points C from the training data
Y was also tested for centroid selection:

C ∈R
h×d ⊂ Y (6.12)

The sampling process makes no assumptions regarding distribution. The expected behavior
is that the algorithm will select more points in denser regions of the training data space. As
with the random dictionary with OMP regression, this technique is a baseline to measure
the impact of centroid selection for the creation of evenly balanced partitions.

6.2 Experiments

We have described how to create over-complete codebooks that generate sparse, high di-
mensional hashes. To measure how well the proposed methods meet the stated partitioning
and retrieval goals, they were evaluated from three perspectives:

• Balanced partitioning: measure how the tested methods manage to balance the size
of the partitions;

• Inter-partition retrieval: measure the cumulative impact of searching on more than
one partition;

• Intra-partition retrieval: measure how well the partitions capture the original space
nearest neighbours;

The index complexity and memory requirements for this index are similar to DISH,
Section 5.1.5.1. The main advantage of this technique of the balanced index is that both
computational and memory complexity will be more uniform across nodes.

Dataset: Index partitioning methods were tested on the ANN dataset [48] one million
subsets, section 2.6.4. It contains one million descriptors from two feature types: GIST
(960 dimensions) and SIFT features (128 dimensions). The datasets training, validation
and test splits follow the standard protocol for the dataset1.

1http://corpus-texmex.irisa.fr/
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Metrics: In addition to load balancing quality metrics, which are the number of
documents per partition p and standard deviation σ of partition size versus the mean, the
following retrieval quality metrics were averaged over 1000 queries:

• 1-recall@r: average rate of queries for which the 1-nearest neighbor was returned. r
changes with the number of candidates inspected.

• avgP@k: average percentage of true k nearest neighbors retrieved.

Parameters: Based on preliminary experiments, I found that setting the exponent
of the penalty to c = 2 and regularization factor to r = 0.001 offered the best trade-off
between similarity and even balancing. The sparsity coefficient was set to s = 10 for all
algorithms and varied the codebook size h and thus, the number of partitions (512, 1024,
2048, 4096, 8192).

6.2.1 Balanced partitioning

The goal of this experiment is to measure how the selected techniques distribute documents
across partitions, for multiple numbers of partitions and feature types. Documents were
assigned to the partitions with corresponding non-zero atoms/centroids, for each partition
method, feature type and the number of partitions.

Figures 6.4 and 6.5 shows the behavior of the partitioning algorithms for the GIST
and SIFT features (left and right side charts respectively) and the number of partitions
(different rows). For readability, each chart is divided into two parts: the smaller chart
shows the occupation of the top 20 partitions, where the variation in scale of the number
of documents is higher. The larger chart shows the variation for the remaining partitions
(20 to h). The X-axis represents the partitions, sorted in descending order of the number
of indexed documents (i.e., partitions with more documents are to the left). The Y-axis
represents the number of documents on that partition. Note that, as the goal is to show
the relative differences between partitioning methods, the Y-axis scale is different across
charts. It is also important to note that the sum of the sizes of the partitions is the same
for all partitioning methods (index size n× s).

Table 6.1 shows the detailed standard deviation (σ), larger partition (Max), and median
(Med) partition size (h/2). KSVD learns a dictionary with the principal directions of the
data in the original space. Combined with OMP greedy atom selection, KSVD sparse
representations are highly biased towards principal directions, which is clear on the top
20 charts. B-KSVD managed to counteract KSVD’s greediness and generated the most
balanced solutions (σ columns on Table 6.1). This effect is clearer at the partitions with
the larger and smaller partitions: on the top 20 positions, B-KSVD is less affected than
KSVD, by the most popular directions of the data; the occupation of the partition at
median value is also consistently closer to the expected value (Mean) than other methods,
meaning the decrease in the number of documents is much slower and gradual than the
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Figure 6.4: Sorted partition size distribution on GIST features for multiple numbers of
partitions. The charts on the leftmost column show the top 20 partition sizes, and the
charts on the rightmost column show the remaining partition sizes.
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Figure 6.5: Sorted partition size distribution on SIFT features for multiple numbers of
partitions. The charts on the leftmost column show the top 20 partition sizes, and the
charts on the rightmost column show the remaining partition sizes.
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other retrieval methods tested. B-KSVD is also the most stable solution, offering the best
balancing properties for all partition sizes and feature types.

k-means performance is greatly affected by feature type. For SIFT features, k-means
partition size balancing is in line with B-KSVD for the top 20 positions, with a faster decay
in the number of documents on the smaller partitions. For GIST features, the unbalanced
distribution is more clear and appears earlier (top 20).

The impact in balancing partition sizes of the data-dependent approaches (k-means,
KSVD and B-KSVD) versus random and sampling techniques was also tested. OMP with
the random dictionary balancing varied greatly for the type of features used: for GIST,
it is in line with k-means; for SIFT it has the most unbalanced distribution of all tested
methods (e.g., some partitions have over 1/8 of the total number of indexed documents).
Sample clustering also shows large unbalances, where larger partitions clustered most of
the documents. The large balancing variations for these methods shows that adjusting
codebooks to the data has a large impact on balancing partitions.

The impact of the number of partitions is also clearly visible. The tested partitioning
methods are not designed to handle a higher number of partitions, generating a large num-
ber of very small or empty partitions (visible on the right side of X-axis of Figures 6.4 and
6.5). The exception is B-KSVD, that managed to keep evenly sized partitions, regardless
of the number of partitions.

These experiments showed how different partitioning methods distribute documents
across partitions. B-KSVD countered the greedy nature of regular KSVD and offered the
most uniform partitions. On the following sections, we will show how it affects the retrieval
performance.

6.2.2 Searching redundant partitions

Balancing partition sizes is only desirable if it does not degrade retrieval performance. In
this section, we will measure the retrieval impact of searching on over-complete partitions.
An advantage of real-valued over binary hashes is that sparse hash values represent the
document-partition membership likelihood. By having a measure of membership of the
documents and queries to partitions, one can prioritize candidate selection at partition or
global level.

Intra-partition search: This experiment shows the retrieval performance of individual
partitions, Figure 6.6. For each query, 1000 candidates (i.e., 0.1% of total index size)
were selected from each corresponding partition, for a combined limit of 1%. The order of
partition inspection is defined by the coefficients (OMP-based approaches) or the inverse
of the distance to the centroid (centroid-based approaches).

B-KSVD offers the best results on the first partition (i.e., higher membership) for
GIST partitions (14% of 50 nearest neighbors, examining, 1000 documents, i.e., 0.1% of
the index). The number of nearest neighbors decreases for lower membership partitions.

101



CHAPTER 6. BALANCING DISTRIBUTED INDEX PARTITIONS

1 2 3 4 5 6 7 8 9 10

Partition

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

a
v
g
P
@

5
0

GIST, h = 512, 1% limit

1 2 3 4 5 6 7 8 9 10

Partition

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

a
v
g
P
@

5
0

SIFT, h = 512, 1% limit

1 2 3 4 5 6 7 8 9 10

Partition

0.00

0.02

0.04

0.06

0.08

0.10

a
v
g
P
@

5
0

GIST, h = 1024, 1% limit

1 2 3 4 5 6 7 8 9 10

Partition

0.00

0.02

0.04

0.06

0.08

0.10

a
v
g
P
@

5
0

SIFT, h = 1024, 1% limit

1 2 3 4 5 6 7 8 9 10

Partition

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

a
v
g
P
@

5
0

GIST, h = 2048, 1% limit

1 2 3 4 5 6 7 8 9 10

Partition

0.00

0.02

0.04

0.06

0.08

0.10

a
v
g
P
@

5
0

SIFT, h = 2048, 1% limit

1 2 3 4 5 6 7 8 9 10

Partition

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

a
v
g
P
@

5
0

GIST, h = 4096, 1% limit

1 2 3 4 5 6 7 8 9 10

Partition

0.00

0.02

0.04

0.06

0.08

0.10

0.12

a
v
g
P
@

5
0

SIFT, h = 4096, 1% limit

1 2 3 4 5 6 7 8 9 10

Partition

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

a
v
g
P
@

5
0

GIST, h = 8192, 1% limit

1 2 3 4 5 6 7 8 9 10

Partition

0.00

0.05

0.10

0.15

0.20

a
v
g
P
@

5
0

SIFT, h = 8192, 1% limit

Random OMP KSVD OMP B-KSVD OMP Sample clust. k-means clust.

Figure 6.6: Inter-node partition: avgP@50 of individual partitions, for multiple feature
types and number of partitions
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Figure 6.7: Cumulative inter-node partition: global avgP@50, for multiple feature types
and number of partitions
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Figure 6.8: Cumulative inter-node partition: global avgP@50, for GIST features and
multiple limits

The impact of the remaining partitioning methods is in the order of 2% of the 50 nearest
neighbors, for a 0.1% search limit.

For SIFT, the partition results show a different pattern. KSVD and B-KSVD also
retrieve the most results on the top membership positions, for all but the experiments with
8192 partitions. For larger numbers of partitions, clustering-based solutions offer better
results.

Inter-partition (global) search: Table 6.2 shows the aggregated results for the search
process. From each partition, 0.1% and 1% were selected from the total index size. With
the (fixed) sparsity factor s set to 10, the combined limit is 1% and 10% of total index
size, respectively.

The advantages of KSVD based methods are clear on the limited search conditions
(inspecting 1% of the index). When using smaller search inspection limits, the recon-
struction coefficient represents similarity in the original space better than the distance to
cluster centroids. For larger search inspection limits (10%) and more partitions, clustering
methods can retrieve a larger set of candidates. The same findings are also valid for 1-recall
results. The main difference is that they are slightly higher that avgP@50 results. This
means that both sparse coding and clustering methods can index the first nearest neighbor
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Figure 6.9: Cumulative inter-node partition: global avgP@50, for SIFT features and
multiple limits

at higher rates than the remaining 49 nearest neighbors.
Incremental inter-partition search: Figures 6.7, 6.8 and 6.9 detail Table 6.2 results, by

showing the incremental avgP@50 gains of inspecting all 10 partitions. Figure 6.7 shows
the results for a 1% search limit; Figures 6.8 and 6.9 show what happens when increasing
the search limit to 5% and 10% of index size. As with Figure 6.6 results, partitions are
inspected by coefficient or inverse distance-to-centroid order.

These results show some interesting differences in retrieval effectiveness. For GIST
features, B-KSVD achieves good avgP@50 when inspecting one partition with 1%-5%
search limits. It is also clear that there is only an average difference in avgP@50 between
5 and 10% when inspecting one versus all (10) partitions, regardless of partition size. For
SIFT features, the behavior is similar, with higher avgP@50 gains when inspecting more
partitions. KSVD behaves similarly, but with lower initial avgP@50 on most parameter
configuration. Random OMP follows a trend more similar to clustering based approaches:
the initial avgP@50 is lower, and the gains from inspecting more partitions are higher.

On k-means and other clustering-based techniques, having more partitions increases
retrieval performance. This property is more evident when dealing with more partitions
and using higher search limits.
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As both codebook and clustering methods are based on greedy atom selection, adding
the document to more partitions does not affect the results for previous partitions. Thus,
the expected retrieval performance of setting the value of the redundancy factor to between
one and ten is visible by inspecting precision levels at those levels in Figures 6.7, 6.8 and 6.9.

6.3 Discussion

The previous section showed how search space partitioning algorithms affect the balanced
distribution of documents across partitions, and the corresponding impact on retrieval
performance. This fulfills the initial goal of this chapter: create balanced search space
partitions for distributed indexing and retrieval. Experiments show that B-KSVD can
work for the partitioning of a distributed search index better than the baseline methods.

A clear pattern across experiments is that sparse coding-based techniques have better
precision with lower search limits and a smaller number of partitions, while centroid based
approaches have better results when searching with higher limits and more centroids. This
is due to centroid-based techniques being based on selecting points in the original space.
Selecting more centroids increases the probability of getting better coverage of the search
space. This property also results in having the nearest neighbors more spread out over
more partitions, resulting in higher gains when inspecting more partitions. This is visible
when dealing with SIFT features and a large number of partitions (e.g., 8192). It is also
clear how centroid selection as a non-negligible impact on retrieval performance.

This contrasts with dictionary-based approaches, which transform the original feature
space into a new space, based on the principal directions of the original space. Gains in
performance decrease as one inspects the hash dimensions with a smaller reconstruction
coefficients. B-KSVD achieves good distribution and works well for low search limits (1%
of total index size), and a small number of partitions (512 to 1024). This is an interesting
property to answer concurrent queries on distributed indexes: a more balanced distribution
means that the probability of querying the same node for multiple queries decreases.

k-means works better for higher limits and number of partitions, due to being based
on working in the original search sparse. It offers more predictable, linear performance
increase, at the cost of by having larger partitions.

6.4 Conclusion

This chapter proposes B-KSVD, a codebook learning technique for the creation of balanced,
over-complete search partitions. It formalized the requirements to create overcomplete
representations with redundant document indexing, where partitions contain overlapping
subsets of data. The proposed representations are based on sparse coding and clustering
models and on an adaption to the KSVD algorithm, B-KSVD, that distributes hash values
across positions, according to the global distribution.
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Experiments showed that computing codebooks that penalize larger partitions creates
more balanced partitions, and has a positive retrieval impact.
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Conclusions

7.1 Achievements

The goal of this thesis was to research multimedia search engine architectures that address
the specific requirements of large-scale multimedia indexing in a distributed environment.

The proposed vertical partitioning technique, MVP, partitions indexes across nodes by
their feature spaces, adding little overhead in the distribution and retrieval process.

As vertically partitioned indexes are limited to the resources of individual nodes, I
proposed a set of techniques to effectively partition and distribute single feature indexes
to multiple nodes. Thus, I proposed index distribution at two levels:

• Node-level: DISH is able to generate the best possible load distribution across nodes
over a set of very unbalanced partitions;

• Partition-level: B-KSVD can generate evenly sized index partitions based on docu-
ment similarity, with a positive impact on retrieval.

From an evaluation perspective, I performed extensive performance evaluations of all
components, both from an effectiveness and an efficiency point of view:

• The deployment of a one billion feature vector DISH index on a commercial cloud
provider, with exhaustive benchmarking over a varying number of nodes and query
streams;

• B-KSVD results show that balancing can work at partition level and even bring
retrieval performance improvements when compared to traditional, unbalanced ap-
proaches;

• Rank fusion experiments showed that L2F techniques achieved better results that
state-of-the-art LETOR approaches when working with limited expert domain data.
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One of the main findings of this thesis is the that balancing partition sizes is not
diametrically opposed to content-based indexing. Moreover, incremental redundancy shows
that it is possible to index documents in partitions with different sets of nearest neighbors,
giving both retrieval performance and redundancy improvements.

Rank fusion approaches were applied to combine results from a vertically partitioned
index. This thesis proposes a rank fusion approach, L2F, that can combine results across
modalities, improving retrieval results from individual partitions. L2F selects the best
features by measuring the incremental improvement on retrieval performance on datasets
with limited training data. L2F can improve query time and efficiency, as it does not need
to query all indexes to achieve top retrieval performance.

7.1.1 Clinical and federated IR evaluation campaigns

In addition to the evaluation performed on this thesis, the proposed techniques were tested
on applied retrieval competitions such as ImageCLEF and TREC. The following list shows
the corresponding Working Notes and noteworthy results:

• André Mourão, Flávio Martins and João Magalhães, NovaSearch on Medical Im-
ageCLEF 2013, Working notes on ImageCLEF 2013. Best multimodal case-based
retrieval performance;

• André Mourão, Flávio Martins and João Magalhães, NovaSearch at TREC 2013
Federated Web Search Track: Experiments with rank fusion, Working notes on TREC
2013. Best NDCG@20 for the rank list fusion task;

• André Mourão, Flávio Martins and João Magalhães, NovaSearch at TREC 2014
Clinical Decision Support Track, Working notes on TREC 2014. Best P@10 and Top
3 infNDCG;

• André Mourão, Flávio Martins and João Magalhães, NovaSearch at TREC 2015
Clinical Decision Support Track, Working notes on TREC 2015;

• Gonçalo Araújo, André Mourão and João Magalhães, NovaSearch at TREC 2017
Clinical Decision Support Track, Working notes on TREC 2017;

7.1.2 Impact

The long-term vision of this thesis is a multimodal federated search engine that can learn
across documents multiple modalities and represented as a very diverse set of features. As
application of such system is a clinical decision support system that can gather data from
multiple sources (e.g., biomedical articles, medical imaging datasets focused on a family
of diseases, blood work data, structured thesaurus, and coding systems, etc.) and provide
relevant insights to current cases in the form of similar cases, possible diagnosis, suggested
treatments and tests. This thesis takes the first steps towards this vision, by the creation
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of a generic indexing and retrieval architecture that can deal with these heterogeneous
features and with the scale that comes from the support for such complex documents. The
following list shows the current and potential applications of the proposed methods:

• Bio-medical image retrieval: a system that takes a short patient case report (including
text, images, and demographic information) and returns a list of most relevant articles
in the literature. (NovaMedSeach);

• Video search and summarization: find similar video scenes for video composition
and summarization (NovaVidSearch);

• Duplicate image search: DISH and B-KSVD could be applied to improve the efficiency
of near-duplicate search engines such as Google Reverse Image Search or TinEye;

• Federated web search: aggregate results from multiple search engines from multiple
domains or using varied set of features from multiple modalities, to generate a more
diverse set of results (as intended in the TREC Federated Web task);

7.2 Limitations

The proposed architecture is based on the assumption that feature vectors can adequately
model documents and that load distribution follows the distribution of indexed documents.
Thus, the following points show its potential limitations:

• Balancing the number of documents across nodes does not guarantee that the load
will be perfectly balanced across nodes. Query distribution can be affected by factors
which are external to document distribution such as seasonal patterns or large scale
events that distort the search space Jin et al. [51];

• Sparse hashing approaches are dependent on a final l2 candidate sort, which takes a
non-negligible amount of processor node time;

• As with existing approximate nearest neighbor retrieval systems, SHI and DISH
improve retrieval temporal performance at the cost of precision when compared to
an exhaustive search process;

• Retrieval effectiveness is limited by the gap between human and computational
perception of document similarity. In this thesis, this is mitigated by using multiple
modalities and features for retrieval.

7.3 Future work

The following topics describe potential research ideas that arose during this thesis:
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• Hierarchical distributed sparse hashing: replace posting lists and linear search at
intra-node level with another inverted index structure better fitted to the documents
assigned to each partition (e.g., a per-partition SHI);

• Rank fusion to combine results from a horizontally partitioned index: research on
the possibility of replacing the costly l2 candidate sort in the original feature space
using rank fusion;

• Incorporate document age and other statistics into the codebook. For example,
should the moment where documents are added to the index influence the indexing
process? (e.g., documents that arrive at the same time are indexed together);

• Fine-grained control of the search process: choose which nodes to query, based on
current node load and the document to partition membership;

• Test other types of numerical feature vector data: bio-medical data such as blood
work, temperature, blood pressure, activity data; or mapping-based data: road and
points coordinates, among others.
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Table A.1: Retrieval performance of the rank lists produced using a textual index (BM25L
retrieval function with MeSH query expansion and Pseudo-Relevance feedback query ex-
pansion) and image search based on a set of HSV histogram

Image-based Case-based
Textual index MAP NDCG@20 P@10 P@30 MAP NDCG@20 P@10 P@30

HSV histogram 0.0072 0.0297 0.0343 0.0267 0.0281 0.0637 0.0429 0.0238
BM25L_MSH_PRF (text) 0.2305 0.3359 0.2971 0.2181 0.2233 0.3216 0.2600 0.1800
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APPENDIX A. RETRIEVAL PERFORMANCE FOR INDIVIDUAL
FEATURES AND METHODS

Table A.2: Retrieval performance of the full set of 64 rank lists produced using various
ranking functions (BM25L, BM25+, Language Models (LM) and TF_IDF, (D)) on multi-
ple combinations of fields (full text, abstract and title) query expansion (MeSH, SNOmed,
Shingles and Pseudo-relevance feedback, PRF) for the TREC CDS dataset.

TREC CDS 14 TREC CDS 15
MAP NDCG@20 P@10 P@30 MAP NDCG@20 P@10 P@30

BM25+_f_MSH_NoPRF 0.0922 0.2240 0.2700 0.2222 0.0828 0.2362 0.3333 0.2700
BM25+_f_MSH_PRF 0.1378 0.2771 0.3767 0.2778 0.1299 0.2573 0.3667 0.3000
BM25+_f_NoEXP_NoPRF 0.0953 0.2350 0.2900 0.2267 0.0878 0.2461 0.3367 0.2800
BM25+_f_NoEXP_PRF 0.1354 0.2881 0.3833 0.2900 0.1368 0.2724 0.4033 0.3156
BM25+_f_SHI_NoPRF 0.0813 0.2273 0.2833 0.1989 0.0837 0.2376 0.3200 0.2667
BM25+_f_SHI_PRF 0.1302 0.2768 0.3767 0.2722 0.1195 0.2527 0.3400 0.2867
BM25+_f_SNO_NoPRF 0.0932 0.2265 0.2833 0.2178 0.0853 0.2270 0.3467 0.2711
BM25+_f_SNO_PRF 0.1282 0.2558 0.3300 0.2633 0.1261 0.2329 0.3400 0.2911
BM25+_fat_MSH_NoPRF 0.0812 0.1887 0.2300 0.1856 0.0672 0.2009 0.2700 0.2311
BM25+_fat_MSH_PRF 0.1428 0.2656 0.3433 0.2756 0.1272 0.2626 0.3567 0.3056
BM25+_fat_NoEXP_NoPRF 0.0813 0.1908 0.2367 0.1956 0.0701 0.2139 0.2900 0.2356
BM25+_fat_NoEXP_PRF 0.1420 0.2805 0.3400 0.2944 0.1347 0.2741 0.3900 0.3278
BM25+_fat_SHI_NoPRF 0.0789 0.1913 0.2300 0.1889 0.0732 0.2197 0.2967 0.2467
BM25+_fat_SHI_PRF 0.1386 0.2671 0.3467 0.2789 0.1206 0.2420 0.3433 0.2956
BM25+_fat_SNO_NoPRF 0.0802 0.1873 0.2333 0.1922 0.0691 0.2090 0.3033 0.2433
BM25+_fat_SNO_PRF 0.1335 0.2556 0.3167 0.2522 0.1285 0.2384 0.3367 0.2922
BM25L_f_MSH_NoPRF 0.0932 0.2200 0.2533 0.2200 0.0836 0.2420 0.3300 0.2700
BM25L_f_MSH_PRF 0.1465 0.2857 0.3667 0.2989 0.1305 0.2629 0.3567 0.3000
BM25L_f_NoEXP_NoPRF 0.0958 0.2318 0.2900 0.2300 0.0887 0.2533 0.3433 0.2856
BM25L_f_NoEXP_PRF 0.1339 0.2754 0.3533 0.2967 0.1416 0.2746 0.3700 0.3144
BM25L_f_SHI_NoPRF 0.0830 0.2333 0.2833 0.2011 0.0848 0.2452 0.3100 0.2744
BM25L_f_SHI_PRF 0.1283 0.2703 0.3767 0.2667 0.1255 0.2478 0.3433 0.2844
BM25L_f_SNO_NoPRF 0.0946 0.2262 0.2767 0.2167 0.0870 0.2265 0.3367 0.2767
BM25L_f_SNO_PRF 0.1302 0.2588 0.3233 0.2656 0.1288 0.2384 0.3367 0.2944
BM25L_fat_MSH_NoPRF 0.0819 0.1845 0.2400 0.1811 0.0671 0.1943 0.2800 0.2256
BM25L_fat_MSH_PRF 0.1508 0.2725 0.3333 0.2822 0.1271 0.2656 0.3667 0.3022
BM25L_fat_NoEXP_NoPRF 0.0813 0.1923 0.2433 0.1956 0.0702 0.2117 0.2967 0.2289
BM25L_fat_NoEXP_PRF 0.1412 0.2709 0.3433 0.2844 0.1364 0.2768 0.3833 0.3178
BM25L_fat_SHI_NoPRF 0.0789 0.1863 0.2267 0.1967 0.0726 0.2157 0.3000 0.2289
BM25L_fat_SHI_PRF 0.1336 0.2593 0.3267 0.2744 0.1255 0.2500 0.3500 0.2933
BM25L_fat_SNO_NoPRF 0.0807 0.1894 0.2300 0.1878 0.0689 0.2078 0.3000 0.2389
BM25L_fat_SNO_PRF 0.1341 0.2493 0.3400 0.2622 0.1297 0.2445 0.3500 0.2956
D_f_MSH_NoPRF 0.1015 0.2368 0.2867 0.2189 0.0779 0.2012 0.2833 0.2433
D_f_MSH_PRF 0.1445 0.2539 0.3233 0.2656 0.1113 0.1971 0.2700 0.2356
D_f_NoEXP_NoPRF 0.0999 0.2270 0.2867 0.2289 0.0833 0.2189 0.3100 0.2544
D_f_NoEXP_PRF 0.1426 0.2581 0.3300 0.2700 0.1308 0.2280 0.3333 0.2722
D_f_SHI_NoPRF 0.0888 0.2219 0.2433 0.2122 0.0831 0.2171 0.2967 0.2556
D_f_SHI_PRF 0.1304 0.2382 0.3233 0.2456 0.1219 0.2298 0.3533 0.2711
D_f_SNO_NoPRF 0.0984 0.2194 0.2800 0.2200 0.0765 0.1929 0.2700 0.2378
D_f_SNO_PRF 0.1332 0.2375 0.2733 0.2500 0.1167 0.1846 0.2533 0.2567
D_fat_MSH_NoPRF 0.0393 0.1046 0.1600 0.1211 0.0406 0.1408 0.2067 0.1589
D_fat_MSH_PRF 0.1171 0.2343 0.3200 0.2322 0.0891 0.1924 0.2900 0.2278
D_fat_NoEXP_NoPRF 0.0371 0.1040 0.1567 0.1167 0.0386 0.1508 0.2167 0.1633
D_fat_NoEXP_PRF 0.1048 0.2242 0.3100 0.2233 0.0889 0.2157 0.3400 0.2389
D_fat_SHI_NoPRF 0.0378 0.1079 0.1533 0.1167 0.0393 0.1518 0.2200 0.1633
D_fat_SHI_PRF 0.0979 0.2122 0.2867 0.2078 0.0883 0.2250 0.3300 0.2500
D_fat_SNO_NoPRF 0.0388 0.1126 0.1500 0.1189 0.0363 0.1231 0.1733 0.1389
D_fat_SNO_PRF 0.1315 0.2420 0.3167 0.2533 0.1109 0.1884 0.2800 0.2389
LM_f_MSH_NoPRF 0.0916 0.2127 0.2633 0.2167 0.0808 0.2299 0.3167 0.2589
LM_f_MSH_PRF 0.1296 0.2610 0.3267 0.2611 0.1258 0.2609 0.3400 0.3000
LM_f_NoEXP_NoPRF 0.0926 0.2185 0.2533 0.2156 0.0858 0.2526 0.3400 0.2789
LM_f_NoEXP_PRF 0.1132 0.2361 0.2900 0.2356 0.1388 0.2861 0.3600 0.3189
LM_f_SHI_NoPRF 0.0799 0.2011 0.2433 0.1911 0.0816 0.2423 0.3133 0.2644
LM_f_SHI_PRF 0.1007 0.2149 0.2700 0.2089 0.1259 0.2722 0.3600 0.3056
LM_f_SNO_NoPRF 0.0926 0.2113 0.2633 0.2044 0.0839 0.2227 0.3133 0.2678
LM_f_SNO_PRF 0.1253 0.2427 0.3300 0.2467 0.1280 0.2338 0.3133 0.2944
LM_fat_MSH_NoPRF 0.0927 0.1941 0.2500 0.2000 0.0758 0.2075 0.2700 0.2478
LM_fat_MSH_PRF 0.1359 0.2635 0.3233 0.2667 0.1283 0.2623 0.3333 0.3044
LM_fat_NoEXP_NoPRF 0.0969 0.2113 0.2667 0.2111 0.0805 0.2268 0.3033 0.2633
LM_fat_NoEXP_PRF 0.1224 0.2423 0.2933 0.2589 0.1422 0.2825 0.3833 0.3356
LM_fat_SHI_NoPRF 0.0914 0.2064 0.2767 0.2022 0.0812 0.2277 0.3300 0.2644
LM_fat_SHI_PRF 0.1091 0.2101 0.2733 0.2178 0.1284 0.2697 0.3700 0.3156
LM_fat_SNO_NoPRF 0.0959 0.2088 0.2367 0.2000 0.0788 0.2189 0.3133 0.2544
LM_fat_SNO_PRF 0.1309 0.2469 0.3067 0.2511 0.1297 0.2397 0.3400 0.3000
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Table A.3: Retrieval performance of the full set of 148 rank list produced using multiple
search engines for the TREC FW dataset.

TREC FW 13 TREC FW 14
NDCG@20 P@10 NDCG@20 P@10

arXiv.org 0.0232 0.0917 0.0050 0.0273
CCSB 0.0008 0.0061 0.0097 0.0429
CERN_Documents 0.0000 0.0000 0.0046 0.0286
CiteSeerX 0.0097 0.0622 0.0008 0.0042
CiteULike 0.0037 0.0333 0.0146 0.0651
eScholarship 0.0224 0.0824 0.0275 0.1269
KFUPM_ePrints 0.0000 0.0000 0.0035 0.0083
MPRA 0.0009 0.0040 0.0021 0.0135
MS_Academic 0.0190 0.0960 0.0321 0.1391
Nature 0.0116 0.0500 0.0014 0.0125
Organic_Eprints 0.0000 0.0000 0.0000 0.0000
SpringerLink 0.0155 0.0773 0.0157 0.0918
U._Twente 0.0003 0.0036 0.0025 0.0140
UAB_Digital 0.0088 0.0200 0.0084 0.0500
UQ_eSpace 0.0043 0.0233 0.0084 0.0356
PubMed 0.0218 0.0905 0.0125 0.0676
LastFM 0.0046 0.0125 0.0031 0.0267
LYRICSnMUSIC 0.0018 0.0105 0.0004 0.0034
Comedy_Central 0.0065 0.0556 0.0000 0.0000
Dailymotion 0.0692 0.2468 0.0799 0.2551
YouTube 0.1648 0.4580 0.2062 0.5420
Google_Blogs 0.1567 0.4440 0.2896 0.5420
LinkedIn_Blog 0.0000 0.0000 0.0000 0.0000
Tumblr 0.0459 0.2500 0.0054 0.0154
WordPress 0.0882 0.2170 0.1076 0.3540
Goodreads 0.0272 0.1357 0.0760 0.2187
Google_Books 0.0242 0.1240 0.0462 0.1860
NCSU_Library_ 0.0066 0.0333 0.0266 0.1140
IMDb 0.0102 0.0737 0.0127 0.0143
Wikibooks 0.0075 0.0187 0.0196 0.0854
Wikipedia 0.0725 0.1898 0.0951 0.2354
Wikispecies 0.0000 0.0000 0.0000 0.0000
Wiktionary 0.0328 0.0533 0.0089 0.0500
E!_Online 0.0458 0.0727 0.0029 0.0176
Entertainment_Weekly 0.0079 0.0385 0.0055 0.0314
TMZ 0.0038 0.0152 0.0000 0.0000
Addicting_games 0.0000 0.0000 0.0000 0.0000
Amorgames 0.0000 0.0000 0.0000 0.0000
Crazy_monkey_games 0.0000 0.0000 0.0000 0.0000
GameNode 0.0000 0.0000 0.0003 0.0029
Games.com 0.0000 0.0000 0.0111 0.0250
Miniclip 0.0000 0.0000 0.0000 0.0000
About.com 0.0942 0.2909 0.1539 0.4021
Ask 0.2058 0.4780 0.2692 0.4940
CMU_ClueWeb 0.0842 0.2261 0.1085 0.2796
Gigablast 0.1332 0.3040 0.1558 0.1000
Baidu 0.1345 0.2760 0.1130 0.2939
Centers_for_Disease_Control_and_Prevention 0.0084 0.0273 0.0082 0.0273
Family_Practice_notebook 0.0230 0.0333 0.0360 0.1200
Health_Finder 0.0098 0.0400 0.0037 0.0250
HealthCentral 0.0077 0.0208 0.0231 0.0714
HealthLine 0.0109 0.0458 0.0294 0.0667
Healthlinks.net 0.0238 0.1000 0.0150 0.0500
Mayo_Clinic 0.0193 0.0500 0.0326 0.0735
MedicineNet 0.0174 0.0519 0.0234 0.0938
MedlinePlus 0.0000 0.0000 0.0087 0.0618
University_of_Iowa_hospitals_and_clinics 0.0009 0.0091 0.0140 0.0727
WebMD 0.0231 0.0720 0.0296 0.0974
Glassdoor 0.0000 0.0000 0.0000 0.0000
Jobsite 0.0000 0.0000 0.0000 0.0000
LinkedIn_Jobs 0.0005 0.0063 0.0000 0.0000
Simply_Hired 0.0000 0.0000 0.0029 0.0067
USAJobs 0.0000 0.0000 0.0000 0.0000
Comedy_Central_Jokes.com 0.0127 0.0500 0.0000 0.0000
Kickass_jokes 0.0000 0.0000 0.0000 0.0000
Cartoon_Network 0.0000 0.0000 0.0000 0.0000
Disney_Family 0.0027 0.0089 0.0142 0.0354
Factmonster 0.0072 0.0188 0.0324 0.0848
Kidrex 0.3107 0.5617 0.2402 0.4275
KidsClicks! 0.0000 0.0000 0.0148 0.0625
Nick_jr 0.0000 0.0000 0.0000 0.0000
OER_Commons 0.0000 0.0000 0.0291 0.1182
Quintura_Kids 0.0172 0.1000 0.0536 0.0667
Foursquare 0.0000 0.0000 0.0008 0.0022
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APPENDIX A. RETRIEVAL PERFORMANCE FOR INDIVIDUAL
FEATURES AND METHODS

NDCG@20 P@10 NDCG@20 P@10

BBC 0.0488 0.1103 0.0271 0.0585
Chronicling_America 0.0000 0.0000 0.0008 0.0069
CNN 0.0454 0.1351 0.0424 0.1316
Forbes 0.0143 0.0829 0.0063 0.0452
JSOnline 0.0045 0.0368 0.0562 0.1077
Slate 0.0089 0.0522 0.0196 0.0571
The_Street 0.0060 0.0429 0.0022 0.0143
Washington_post 0.0058 0.0311 0.0090 0.0489
HNSearch 0.0136 0.0385 0.0344 0.0455
Slashdot 0.0014 0.0083 0.0080 0.0467
The_Register 0.0062 0.0167 0.0000 0.0000
DeviantArt 0.0161 0.0900 0.0285 0.1070
Flickr 0.0260 0.1476 0.0088 0.0619
Fotolia 0.0152 0.0750 0.0060 0.0348
Getty_Images 0.0074 0.0357 0.0054 0.0412
IconFinder 0.0000 0.0000 0.0003 0.0022
NYPL_Gallery 0.0165 0.0333 0.0142 0.1125
OpenClipArt 0.0000 0.0000 0.0000 0.0000
Photobucket 0.0490 0.1955 0.0350 0.1091
Picasa 0.0452 0.1816 0.0106 0.0900
Picsearch 0.0705 0.2500 0.0738 0.2100
Wikimedia 0.0542 0.2476 0.0355 0.1486
Funny_or_Die 0.0108 0.0692 0.0078 0.0538
4Shared 0.0336 0.1133 0.0501 0.2214
AllExperts 0.0166 0.0795 0.0191 0.0976
Answers.com 0.0218 0.0653 0.0718 0.1840
Chacha 0.0227 0.1412 0.0300 0.1625
StackOverflow 0.0031 0.0042 0.0004 0.0031
Yahoo_Answers 0.3703 0.6816 0.1106 0.3813
MetaOptimize 0.0000 0.0000 0.0000 0.0000
HowStuffWorks 0.0109 0.0435 0.0281 0.0580
AllRecipes 0.1510 0.4500 0.0912 0.1900
Cooking.com 0.0464 0.0727 0.0166 0.0474
Food_Network 0.0115 0.0167 0.0343 0.0650
Food.com 0.0112 0.0200 0.0700 0.1357
Meals.com 0.0187 0.0333 0.0676 0.1889
Amazon 0.0420 0.1480 0.0379 0.1552
ASOS 0.0000 0.0000 0.0066 0.0182
Craigslist 0.0000 0.0000 0.0189 0.0667
eBay 0.0382 0.1204 0.0508 0.2318
Overstock 0.0275 0.1000 0.0208 0.0889
Powell’s 0.0187 0.1143 0.0609 0.1846
Pronto 0.0142 0.0460 0.0073 0.0347
Target 0.0136 0.0828 0.0386 0.1621
Yahoo!_Shopping 0.0152 0.0580 0.0272 0.0980
Myspace 0.0084 0.0286 0.0000 0.0000
Reddit 0.0679 0.2049 0.0415 0.1617
Tweepz 0.0144 0.0500 0.0063 0.0421
Cnet 0.0156 0.0878 0.0097 0.0333
GitHub 0.0000 0.0000 0.0222 0.0545
SourceForge 0.0000 0.0000 0.0000 0.0000
bleacher_report 0.0555 0.1889 0.0039 0.0444
ESPN 0.0000 0.0000 0.0000 0.0000
Fox_Sports 0.0408 0.1571 0.0011 0.0133
NHL 0.0000 0.0000 0.0000 0.0000
SB_nation 0.0006 0.0056 0.0000 0.0000
Sporting_news 0.0597 0.1538 0.0014 0.0148
WWE 0.0000 0.0000 0.0000 0.0000
Ars_Technica 0.0060 0.0318 0.0123 0.0396
CNET 0.0027 0.0143 0.0060 0.0245
Technet 0.0046 0.0139 0.0005 0.0063
Technorati 0.0711 0.2857 0.0251 0.0650
TechRepublic 0.0192 0.0833 0.0043 0.0294
TripAdvisor 0.0204 0.0361 0.0194 0.0448
Wiki_Travel 0.0531 0.1000 0.0000 0.0000
5min.com 0.0450 0.1826 0.0761 0.1758
AOL_Video 0.3427 0.6740 0.2722 0.4649
Google_Videos 0.2029 0.5040 0.1942 0.5060
MeFeedia 0.0645 0.1667 0.0434 0.1433
Metacafe 0.0441 0.1020 0.0308 0.0800
National_geographic 0.0063 0.0419 0.0153 0.0395
Veoh 0.0828 0.2460 0.0674 0.1900
Vimeo 0.0276 0.1211 0.0380 0.1174
Yahoo_Screen 0.3773 0.6837 0.1499 0.4480
BigWeb 0.2755 0.6128 0.1058 0.1780
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Detai led analysis of the impact of the number
of rank lists and rank posit ions on relevance

B.1 Modeling relevance as a function of the number of rank lists
per document

Figure B.1 shows a set of functions for boosting the score according to the document nrl.
Our hypothesis is that a linear nrl, as applied by CombMNZ, Section 2.5.1, over-emphasis
documents that have a high nrl. This effect is similar to what was observed in BM25L
ranking function [65]: where the logarithm was introduced to counteract increased score
on long documents given by regular BM25. The function that were tested to replace a
linear nrl boost represent logarithmic, exponential and sigmoid growth boosts. The chosen
functions are normalized so that documents on one rank list have a boost of one: the
percentage of relevant documents is divided by the percentage of relevant documents when
nrl = 1.

To show how well the nrl boost functions model real-world data, the dashed lines
represent the relative number of relevant documents per nrl values (a normalized version
of Figures 3.1 and 3.2 data). These functions are normalized so that relevant documents
on one rank list have a boost of one: the percentage of relevant document in a set nrl,
perRelnrl is divided by the percentage of relevant documents when nrl = 1, perRel1,
yielding bnrl = perRelnrl/perRel1. For example, if 25% of document with a nrl = 1 are
relevant (perRel1 = 0.25) and 75% of document with a nrl = 2 are relevant (perRel3 = 0.75),
the bnrl=3 = 0.75/0.25 = 3.

Regularization factors that model the growth in score with frequency are represented
as f ,g, and h. For the logarithmic function, b= log(l+f) , f represents the regularization
to add to the number of rank lists, to avoid a logarithm value of 0 for l = 1. The sigmoid

127



APPENDIX B. DETAILED ANALYSIS OF THE IMPACT OF THE
NUMBER OF RANK LISTS AND RANK POSITIONS ON RELEVANCE
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Figure B.1: Multiple document frequency weighting functions. The X-axis represents the
number of rank lists a document appears), nrl. The Y-axis represents the boost given by
the function. Each chart varies the scale of the X-axis (1-5, 1-20 and 1-60).
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B.2. MODELING SCORE DECAY WITH RANK LIST POSITION

function, b = g/(1 + el−(1+log(g−1))), regularization factor g was set to five to match the
logarithmic function boost. For the exponential function, b = h(l−1)/h, h represents the
desired maximum boost value, set to the total number of rank lists.

For low document frequency values (1 to 10), FedWeb’s relevance boost seems to
degrade when documents are present on more than three lists. CDS relevance boost grows
between a logarithmic and a slow exponential rate. For higher document frequencies, CDS
relevance growth approaches an exponential function that weighs documents between 1
and the number of rank lists, h

√
h

l−1 where h is the total number of rank lists.
The linear nrl boost is much stronger than the relevance growth on CDS and FedWeb

data. For the logarithmic functions, multiple regularization factors f were tested. At f = 1
the weight difference between low nrl documents and high nrl was too small. At f = 0.01,
the weight difference is closer to CDS and FedWeb data, giving lower boosts to documents
to low nrl documents.

B.2 Modeling score decay with rank list position

Document frequency is a key factor for ranking, but it ignores the position of documents
on the rank list. Figure B.2 show how multiple functions model the decay in relevance with
the decrease in the position on the rank list at multiple scales (1−10, 1−100 and 1−1000
rank positions). The plotted functions include Borda’s linear decay, RRF’s inverse decay
for multiple k values, exponential decay, and logarithmic decay. The dashed lines represent
the (normalized) number of relevant documents at each rank position, for all rank lists in
the TREC CDS and FedWeb datasets. In other words, it measures how relevance decays
with the position on the rank. For example, if 50 ranks lists have a relevant document at
the first rank position and 40 documents at the second rank position, normalized values
will be 50/50 = 1 for r = 1 and 40/50 = 0.8 for r = 2. As with the previous section, score
values are normalized to enable us to measure the relative differences between functions.

The RRF scores decrease slowly with the rank position. For a k = 60, documents
ranked in position 50 will have less than half of the score of the documents ranked first
in a list. The RRF family of functions are the ones that better fit relevance: relevance
decreases with rank position according to RRF’s decay. Both FW and CDS relevance
decay seems to fit RRF decay with k values of between 10 and 60. It is also interesting
to see that the ideal k value seems to increase with the rank position. The RR function
presents a faster decay; a document ranked at position 10 has a score that is ten times
smaller than a document ranked at the first position; a document ranked 50 gets an almost
negligible score. Exponential decay amplifies this difference: a document on position ten
will have 1/100 of the score of a document with the rank position of 1.

BordaFuse linear decay (scores are decreased by one for each rank position 1000, 999,
998, ...) is much slower than inverse ranking approaches. Logarithmic decay is even slower:
for example, a document on rank position 700 will still have over 3/5 of the score of
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Figure B.2: Rank versus score using multiple functions. The X-axis represents the docu-
ment position on the rank list. The Y-axis represents the score given by the rank fusion
function. Each chart varies the scale of the X-axis (1− 10, 1− 100, and 1− 1000).
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B.3. FREQUENCY-BOOSTED RECIPROCAL RANK FUSION

a document ranked 1. Both approaches return scores which are far from the relevance
information observed for the CDS and FedWeb datasets.

B.3 Frequency-boosted Reciprocal Rank Fusion

The previous section showed that there is a correlation between the number of rank lists doc-
uments appear, nrl and relevance, validating the Chorus Effect. But RRF does not explic-
itly boost documents with nrl. This section proposes and benchmarks Frequency-boosted
Reciprocal Rank Fusion, Thus, this section proposes two "frequency boosted" versions of
RRF, based on logarithmic and exponential nrl boosts to RRF document scores:

LogN_RRF(i) = log(nrl(i) +σ)×
nrl(i)∑
k=1

1
Rk(i) + k

, (B.1)

exp_RRF(i) = h
√
h

nrl(i)−1×
nrl(i)∑
k=1

1
Rk(i) + k

, (B.2)

where N(i) is the number of times a document appears on a rank list (document frequency),
Rk(i) is the rank of document i on the kth rank, and h is the exponential regularization
factor.

Tables B.1 and B.2 benchmark RRF and the proposed variants to : (i) test different
types of nrl boosts to approach the relevance curve for the TREC FW and CDS data
in Figure B.1 and (ii) vary the value of k to approximate the observed relevance decay
on Figure B.2. These results show that the impact of k is small; the main improvement
in performance happens the value of k goes from zero to 10. For large values of k > 60,
performance either stabilizes,Table B.2 or decays slightly, Table B.1. Regarding applying
explicit nrl boosts as provided by LogNRRF and ExpRRF, the impact in performance is
very small: LogNRRF had slightly better results for the CDS 14 and FW 14 data, but
the improvement is not consistent across datasets and values of k. These results shows
that adding a explicit boost to documents that appear on more rank lists to RRF has
a limited effect on performance. RRF is able to adequately model relevance decay with
rank position by the sum of the inverse rank positions, without the need for an explicit
nrl boost. The small effect of the k value on retrieval performance matches existing rank
fusion literature [30].
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Table B.1: Fusion results for RRF and boosted variants (log and exp) for multiple values
of k on the TREC CDS dataset. k values between 40 and 100 yielded similar results as
k = 40

RRF LogNRRF ExpNRRF

k NDCG@20 P@10 NDCG@20 P@10 NDCG@20 P@10

TREC CDS 14

0 0.2676 0.3200 0.2679 0.3200 0.2694 0.3267
10 0.2734 0.3333 0.2750 0.3333 0.2678 0.3300
20 0.2713 0.3300 0.2705 0.3333 0.2678 0.3267
40 0.2718 0.3333 0.2707 0.3400 0.2657 0.3233
60 0.2699 0.3300 0.2702 0.3300 0.2644 0.3200
80 0.2695 0.3267 0.2684 0.3233 0.2661 0.3167
100 0.2675 0.3233 0.2657 0.3200 0.2679 0.3133

TREC CDS 15

0 0.2510 0.3667 0.2525 0.3667 0.2574 0.3633
10 0.2610 0.3800 0.2642 0.3800 0.2634 0.3500
20 0.2640 0.3800 0.2640 0.3800 0.2657 0.3567
40 0.2653 0.3567 0.2673 0.3567 0.2646 0.3567
60 0.2677 0.3533 0.2675 0.3500 0.2622 0.3433
80 0.2654 0.3433 0.2639 0.3433 0.2615 0.3400
100 0.2608 0.3433 0.2596 0.3433 0.2562 0.3367

Table B.2: Fusion results for RRF and boosted variants (log and exp) for multiple values
of k on the TREC FW dataset. k values between 40 and 100 yielded similar results as
k = 40

RRF LogNRRF ExpNRRF

k NDCG@20 P@10 NDCG@20 P@10 NDCG@20 P@10

TREC FW 13

0 0.3171 0.5220 0.4954 0.7120 0.3392 0.5600
10 0.4969 0.7260 0.4949 0.7280 0.4951 0.7280
20 0.4960 0.7300 0.4960 0.7300 0.4960 0.7300
40 0.4961 0.7300 0.4961 0.7300 0.4961 0.7300

TREC FW 14

0 0.2234 0.3620 0.3510 0.5300 0.2345 0.3820
10 0.3489 0.5400 0.3476 0.5440 0.3478 0.5440
20 0.3476 0.5460 0.3486 0.5460 0.3478 0.5460
40 0.3486 0.5460 0.3486 0.5460 0.3486 0.5460
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Proof for the estimation of the redundancy

factor r̂

Consider m the number of nodes and s the number of non-null coefficients for a documents’
sparse hash. Our goal is to determine the expected percentage of nodes that will have at
least one of the coefficients. In other words, on how many nodes will each document be
indexed. This is a variation of the birthday problem or the hash collision problem, detailed
in Fienberg and Hoaglin [36], Equation 4.

Assuming that the distribution of documents across nodes is balanced, and that the
distribution of coefficients across nodes is random, the probability of each coefficient
being assigned to a node is 1/m. Choose a coefficient out of the s coefficients. The
probability of these coefficient falling on a different node than the other s− 1 coefficients
is σs−1 = (m−1

m )s−1, and the probability of a collision is 1−σs−1. The expected number
of occupied nodes, r̂ms, for the first case is 1 + r̂ms−1. For the second case, is r̂ms−1.

r̂ms = σs−1(1 + r̂ms−1) + (1−σs−1)r̂ms−1

= σs−1 + r̂ms−1

as r̂m1 = 1,we can rewrite the expression as:

r̂ms = σs−1 +σs−2 + ...+σ1 + 1

= (σs− 1)/(σ− 1)

=m(1−σs)

=m

(
1−

(
m− 1
m

)s)
(C.1)

The percentage of occupied nodes r̂ becomes:

r̂ = r̂m

m
= 1−

(
m− 1
m

)s

(C.2)
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