Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/189598
Título: Clinical trial outcome prediction using a multimodal mixture-of-experts approach expanding on the LIFTED framework and interpretation aided by SHAP explanations
Autor: Mota, Tiago
Orientador: Han, Qiwei
Palavras-chave: Clinical Trial Outcomes
HINT
Large Language Models
Mixture-of-Experts
LIFTED
Natural Language
SHAP
Data de Defesa: 16-Jun-2025
Resumo: This work presents MMCTO, a multimodal framework predicting clinical trial outcomes by integrating molecular, disease, and eligibility data. Based on the LIFTED architecture, it employs natural language transformation and a Mixture-of-Experts mechanism to unify heterogeneous inputs. It demonstrates superior predictive performance across trial phases on HINT and CTOD datasets. Ablation studies confirm the importance of LLM-generated features and conditioned gating. Finally, for the individual body of work I’ll explore the SHAP explanations which aim to provide transparency. The approach optimizes resources and streamlines processes, potentially avoiding costly failures and accelerating drug development timelines.
URI: http://hdl.handle.net/10362/189598
Designação:  A Work Project, presented as part of the requirements for the Award of a Master’s Degree in Business Analytics from the Nova School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
SpringWP_50387_individual_work.pdf1,54 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.