Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/189598
Registo completo
Campo DCValorIdioma
dc.contributor.advisorHan, Qiwei-
dc.contributor.authorMota, Tiago-
dc.date.accessioned2025-10-22T08:25:42Z-
dc.date.available2025-10-22T08:25:42Z-
dc.date.issued2025-06-16-
dc.date.submitted2025-05-21-
dc.identifier.urihttp://hdl.handle.net/10362/189598-
dc.description.abstractThis work presents MMCTO, a multimodal framework predicting clinical trial outcomes by integrating molecular, disease, and eligibility data. Based on the LIFTED architecture, it employs natural language transformation and a Mixture-of-Experts mechanism to unify heterogeneous inputs. It demonstrates superior predictive performance across trial phases on HINT and CTOD datasets. Ablation studies confirm the importance of LLM-generated features and conditioned gating. Finally, for the individual body of work I’ll explore the SHAP explanations which aim to provide transparency. The approach optimizes resources and streamlines processes, potentially avoiding costly failures and accelerating drug development timelines.pt_PT
dc.language.isoengpt_PT
dc.relationUID/ECO/00124/2013pt_PT
dc.rightsopenAccesspt_PT
dc.subjectClinical Trial Outcomespt_PT
dc.subjectHINTpt_PT
dc.subjectLarge Language Modelspt_PT
dc.subjectMixture-of-Expertspt_PT
dc.subjectLIFTEDpt_PT
dc.subjectNatural Languagept_PT
dc.subjectSHAPpt_PT
dc.titleClinical trial outcome prediction using a multimodal mixture-of-experts approach expanding on the LIFTED framework and interpretation aided by SHAP explanationspt_PT
dc.typemasterThesispt_PT
thesis.degree.name A Work Project, presented as part of the requirements for the Award of a Master’s Degree in Business Analytics from the Nova School of Business and Economicspt_PT
dc.identifier.tid203992156pt_PT
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopt_PT
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
SpringWP_50387_individual_work.pdf1,54 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.