Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/187320
Título: An empirical study on the feature selection abilities of SLIM-GSGP [poster]
Autor: Farinati, Davide
Vanneschi, Leonardo
Palavras-chave: Genetic Programming
Geometric Semantic Genetic Programming
Feature Selection
Symbolic Regression
Artificial Intelligence
Software
Control and Optimization
Discrete Mathematics and Combinatorics
Logic
Data: 11-Ago-2025
Editora: ACM - Association for Computing Machinery
Resumo: Feature Selection (FS) is a key characteristic of any Machine Learning method. Genetic Programming (GP) performs it inherently, using evolution pressure to exclude redundant or irrelevant features. However, this ability is lost in Geometric Semantic Genetic Programming (GSGP), where Geometric Semantic Operator (GSO) keep adding genetic material to the individuals, inevitably adding noisy features. This work focuses on comparing the FS abilities of GSGP and Semantic Learning algorithm based on Inflate and deflate Mutations (SLIM), a promising new variant that employs Deflate Geometric Semantic Mutation (DGSM), a genetic operator that is able to remove genetic material while still inducing an unimodal fitness landscape. The experimental results show how SLIM has superior FS abilities compared to GSGP.
Descrição: Farinati, D., & Vanneschi, L. (2025). An empirical study on the feature selection abilities of SLIM-GSGP [poster]. In G. Ochoa (Ed.), GECCO '25 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 607-610). ACM - Association for Computing Machinery. https://doi.org/10.1145/3712255.372664 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project UIDB/04152/2020 (DOI: 10.54499/UIDB/04152/2020) – Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.
Peer review: yes
URI: http://hdl.handle.net/10362/187320
DOI: https://doi.org/10.1145/3712255.3726642
ISBN: 979-8-4007-1464-1
Aparece nas colecções:NIMS: MagIC - Documentos de conferências internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Empirical_study_on_feature_selection_ability_SLIM-GSGP.pdf519,93 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.