Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/183866
Título: A local characterization of quasi-crystal graphs
Autor: Cain, Alan J.
Malheiro, António
Rodrigues, Fátima
Rodrigues, Inês
Palavras-chave: Discrete Mathematics and Combinatorics
Data: Ago-2025
Resumo: A local characterization of quasi-crystal graphs of type An−1 is provided, by presenting a set of local axioms, similar to the ones introduced by Stembridge for crystal graphs of simply-laced root systems, but restricted to type An−1. It is also shown that quasi-crystal graphs satisfying these axioms are closed under the tensor product recently introduced by Cain, Guilherme and Malheiro. It is deduced that each connected component of such a graph has a unique highest weight element, whose weight is a composition, and it is isomorphic to a quasi-crystal graph of semistandard quasi-ribbon tableaux.
Descrição: Funding Information: This work is funded by national funds through the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 (https://doi.org/10.54499/UIDB/00297/2020) and UIDP/00297/2020 (https://doi.or g/10.54499/UIDP/00297/2020) (Center for Mathematics and Applications). Publisher Copyright: © 2025 The Author(s)
Peer review: yes
URI: http://hdl.handle.net/10362/183866
DOI: https://doi.org/10.1016/j.ejc.2025.104172
ISSN: 0195-6698
Aparece nas colecções:Home collection (FCT)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
_Eds._2025_..pdf825,77 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.