Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/182296
Título: Leveraging Machine Learning For Predictive Modelling in Alzheimer´s Disease
Autor: Rodrigues Pereira da Costa, Ana Marta
Orientador: Vanneschi, Leonardo
Rosenfeld, Liah
Palavras-chave: Alzheimer’sdisease
Trainedimmunity
Cytokineprofile
Machinelearning
Inflammation
Infectionhypothe- sis
Data de Defesa: 23-Dez-2024
Editora: Instituto de Tecnologia Química e Biológica António Xavier. Universidade NOVA de Lisboa
Resumo: "Alzheimer’s disease (AD)’s complex aetheology results in a lack of effective therapies. Studies have suggested the possible involvement of infectious agents and dysregulated inflammation in its pathogenesis. Advances in Machine Learning (ML) permitted the integration and analysis of high-dimensional heterogenous data, uncovering intricate relationships and new disease biomarkers. In this dissertation ML models- including linear and logistic regression, Decision Trees (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Extreme Gradient Boosting (XGB), were deployed to predict AD, using Trained Immunity (TI), Infectious Burden (IB), and serum cytokine data, as well as to model TI data itself, predicting levels of TNF𝛼, IL-6, IL-10, IL-1𝛽 and IL-1RA in response to different infectious stimuli.(...)"
Peer review: yes
URI: http://hdl.handle.net/10362/182296
Aparece nas colecções:ITQB: LA - Master Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Thesis Final Marta Costa.pdf4,92 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.