
Leveraging Machine Learning for 
Predictive Modelling in Alzheimer’s 
Disease: Integrating Trained Immunity, 
Infectious Burden, and Serum Cytokine 
Data

ANA MARTA RODRIGUES PEREIRA DA 
COSTA
BSc in Cellular and Molecular Biology

Sep, 2024



NOVA Information Management School
Instituto Superior de Estatística e Gestão de Informação

Universidade NOVA de Lisboa

LEVERAGINGMACHINE LEARNING FOR PREDICTIVE
MODELLING IN ALZHEIMER’S DISEASE

by

Ana Marta Rodrigues Pereira da Costa

Dissertation presented as partial requirement for obtaining the
Master’s degree in Computational Biology and Bioinformatics

Adviser: Prof. Dr. Leonardo Vanneschi

Co-adviser: Liah Rosenfeld

September, 2024



Leveraging Machine Learning for Predictive Modelling in Alzheimer’s Dis-
ease
Integrating Trained Immunity, Infectious Burden, and Serum Cytokine Data

Copyright © Ana Marta Rodrigues Pereira da Costa, NOVA Information Management
School, NOVA University Lisbon.
The NOVA Information Management School and the NOVA University Lisbon have
the right, perpetual and without geographical boundaries, to file and publish this
dissertation through printed copies reproduced on paper or on digital form, or by any
other means known or that may be invented, and to disseminate through scientific
repositories and admit its copying and distribution for non-commercial, educational
or research purposes, as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v7.1.14) [1].

https://github.com/joaomlourenco/novathesis




To grandma.

iii





Acknowledgements

During the course of this thesis, I have received a great deal of support and assistance,
whithout which this work wouldn’t have been possible, and for this I would like to
express my deepest gratitude.

Firstly, I’m extremely grateful to my esteemed professor and supervisor, Leonardo
Vanneschi, for his mentorship, constructive feedback and reassuring words. He has
been an inspiration in my academic endeavours, and it was through his guidance and
encouragement that I was able to delve into the world of data science.

I would also like to express my sincere appreciation to my co-supervisor, Liah
Rosenfeld, who provided me with her expertise and kind advisement, along with
patience and understanding througout this learning process.

This work would also not have been possible without the continuous support, advice
and proficiency of Dr. Paola Bossú and Iliana Piccolino at Santa Lucia Foundation, as
well as Professor Francesco Fontanella and Professor Claudio De Stefano.

In addition, I would like to extend my heartfelt gratitude for everyone at the PhD
hall, especially Davide Farinati, Berfin Sakallioglu, Emanuele Nardone, Giovanni Pinna
and Lena Dewaele. For all the scientific support, friendly incentives and sharing of
knowledge, but mostly for the sunny lunch breaks and cheerful discussions in english,
portuguese, italian or dutch. I bask in the friendship you have surrounded me with,
this year.

Lastly, my thanks to all the wonderful people in my life. My dear family, especially
my mom who taught me all about the difference women can make in the academic
field and whose journey I always carry with me. To my sweet and bright best friend,
Beatriz Xavier, to whom I pass the torch. And to my boyfriend, Rafael Borralho, as the
saying goes "to be loved is to be known", what a privilege it is to be seen for who we
truly are.

v





„“We all woke up this morning and we had with it the
amazing return of our conscious mind. We

recovered minds with a complete sense of self and a
complete sense of our own existence — yet we hardly

ever pause to consider this wonder.”

— António Damásio, Self Comes to Mind: Constructing
the Conscious Brain

(Professor of Neuroscience)

vii





Abstract

Alzheimer’s disease (AD)’s complex aetheology results in a lack of effective therapies.
Studies have suggested the possible involvement of infectious agents and dysregulated
inflammation in its pathogenesis. Advances in Machine Learning (ML) permitted the
integration and analysis of high-dimensional heterogenous data, uncovering intricate
relationships and new disease biomarkers. In this dissertation ML models- including
linear and logistic regression, Decision Trees (DT), Random Forest (RF), Support Vector
Machine (SVM), K-Nearest Neighbors (KNN) and Extreme Gradient Boosting (XGB),
were deployed to predict AD, using Trained Immunity (TI), Infectious Burden (IB), and
serum cytokine data, as well as to model TI data itself, predicting levels of TNF𝛼, IL-6,
IL-10, IL-1𝛽 and IL-1RA in response to different infectious stimuli.

BestAD-predicting models achieved87.5% accuracy, an AUC of0.88, and100% recall
for AD cases. SHAP analysis highlighted elevated pro-inflammatory cytokines (TNF𝛼,
IL-6, IL-1𝛽) under primary stimulation conditions, and reduced anti-inflammatory
IL-10 levels under infectious challenge, as significant predictors of AD, pointing to a
dysregulated immune response. Including IB data revealed a strong impact of Herpes
Simplex Virus (HSV) antibody levels in AD prediction, supporting the role of herpes in
AD development. Serum-based models achieved 75-80% accuracy, with AUCs of 0.74
and 0.86. IL-18, IL-10 and IL-8 were among most impactful features in optimal models,
although discrepancies in literature and our findings, suggest potential stage-specific
or inflammatory subtypes in AD, highlighting immune response heterogeneity.

Models predicting TI cytokine levels showed moderate success, with models for
TNF𝛼, IL-10 and and IL-1𝛽, being amidst the most effective. These findings suggest
existence of modulating relationships between IB, age, sex, and distinct inflamma-
tory responses in AD, although our models do not fully capture the variability of
immunological response. Nevertheless, our findings demonstrate the potential of ML
in understanding underlying pathways in AD.

Keywords: Alzheimer’s disease, Machine learning, Inflammation, Infection hypothe-
sis, Trained immunity, Cytokine profile
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Resumo

A complexa etiologia da Doença de Alzheimer (DA) resulta na escassez de terapias
eficazes. Estudos sugerem o possível envolvimento de agentes infeciosos e inflamação
desregulada na sua patogénese. Avanços em Aprendizagem Automática (AA) permi-
tiram a integração e análise de dados multi-dimensionais heterogéneos, descobrindo
relações intrincadas e novos biomarcadores. Nesta dissertação, modelos de AA, como
regressão linear e logística, árvores de decisão, Random Forest, Support Vector Machi-
nes, K-Nearest Neighbors e Extreme Gradient Boosting foram usados para prever a DA,
utilizando dados de imunidade treinada (TI), carga infecciosa (IB) e níveis séricos de
citocinas. Também foi modelada a TI, prevendo níveis de TNF𝛼, IL-6, IL-10, IL-1𝛽 e
IL-1RA em resposta a estímulos infecciosos.

Os melhores modelos para a DA atingiram 87,5% de exatidão, AUC de 0,88 e 100%
de recuperação para casos de DA. A análise SHAP destacou citocinas pró-inflamatórias
elevadas (TNF𝛼, IL-6, IL-1𝛽) em condições de estimulação primária, e níveis reduzidos
de IL-10 sob desafio infecioso, como preditores significativos de DA, sugerindo uma
resposta imune desregulada. A inclusão da carga infecciosa revelou o forte impacto
dos anticorpos contra Herpes Simplex (HSV) na previsão da DA, apoiando o papel do
herpes no seu desenvolvimento. Os modelos com dados de soro alcançaram 75-80% de
exatidão, com AUCs de 0,74 e 0,86. IL-18, IL-10 e IL-8 destacaram-se como variáveis-
chave, embora discrepâncias com a literatura sugiram potenciais estados específicos
ou subtipos inflamatórios na DA, refletindo a heterogeneidade da resposta imune.

Modelos para os níveis de citocinas em TI demonstraram um sucesso moderado,
com modelos para TNF𝛼, IL-10 e IL-1𝛽 entre os mais eficazes. Estes resultados sugerem
a existência de relações moduladoras entre IB, idade, sexo e respostas inflamatórias
distintas na DA, embora os nossos modelos não capturem totalmente a variabilidade
da resposta imunológica. No entanto, os nossos resultados demonstram o potencial da
AA na compreensão dos mecanismos subjacentes à DA.

Palavras-chave: Doença de Alzheimer, Aprendizagem automática, Inflamação, Hipó-
tese infecciosa, Imunidade treinada, Perfil de citocinas
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Introduction

AD is a devastating neurodegenerative disease, estimated to affect over 50 million
people worldwide [2]. It is the most prevalent form of dementia, being progressive and
irreversible, impairing function, cognition, and behavior [3]. With no current effective
therapies available, AD is projected to roughly triple in its prevalence by 2050, reaching
over 131.5 million people [4]. This jump is partially due to a progressively aging
population, but also to the complex and multifactorial nature of this type of dementia,
which has severely challenged investigator’s efforts to tackle this disease [5]. In this
scenario, the need for new and diverse approaches for the studying of AD becomes
evident. This is where recent technological advances, such as ML techniques enter.
From predicting Alzheimer’s progression from Mild Cognitive Impairment (MCI) (a
common early form of dementia) through medical image analysis [6, 7] to finding
biomarkers of this disease and personalized treatment strategies [8–10], in the past
decade, ML has proven to be a very useful and powerful tool in the fight against this
debilitating disease [11].

As mentioned, a hefty obstacle to the development of effective therapies against
AD is its multifaceted aetheology. As this disease is characterized by the accumulation
of amyloid-𝛽 plaques and tau protein tangles in the brain [12]. Several studies have
focused on these hallmarks in order to explain the underlying cause and mechanisms
of AD [13–15] and as avenues of treatment for this form of dementia, however, with
little efficacy [16]. In this way, a growing body of research has shifted its attention
to the potential role of microbial agents and immune system dysregulation in AD
pathogenesis. This mechanism is known as the infection hypothesis, which gained
traction with Itzhaki’s work in 1997 [17], when researchers found evidence of HSV type
1 viral DNA in the brain of AD patients. More recently, multiple papers have explored
the hypothesis of a high IB, involving herpesviruses, Chlamydia pneumoniae, Helicobacter
pylori and other pathogens, being associated with an increased risk of AD, possibly as
a result of the chronic inflammation that these infections provoke [18, 19].

Moreover, the concept of innate immune memory, where previous inflammatory
stimuli induce long-term epigenetic reprogramming of innate immune cells [20], has
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emerged as a crucial factor in modifying the progression of AD. Paradoxically, this
phenomenon, while possibly protective against infections, might also exacerbate neu-
rodegeneration in AD by inducing maladaptive immune responses [21, 22]. These
processes have been linked to the IL-1 family of cytokines, specifically IL-1𝛽 and IL-18,
which display a dual function of promoting neuroinflammation and driving disease
progression [23].

The work developed in this thesis is inserted in this context and its goal is to
develop predictive and interpretable ML models for AD by using TI, IB and serum
cytokine data. Our IB data encompasses 5 different pathogens: HSV type 1 and type
2 (HSV-1/2), Helicobacter pylori, Cytomegalovirus (CMV), Chlamydia pneumoniae and
Borrelia burgdorferi; and our TI data mainly focuses on 5 different cytokines: TNF-𝛼,
IL-6, IL-10, IL-1𝛽 and IL-1RA, under varying stimulation conditions. We primarily aim
to explore relationships within the data between IB, cytokine levels and AD. We also
intend to identify distinct TI cytokine profiles, including pro-inflammatory and anti-
inflammatory markers, in both baseline and post-stimulation conditions, to assess their
predictive value for distinguishing between AD patients and controls. Additionally,
we also strive to investigate the relationship between IB and cytokine profiles in the
context of this disease, and, lastly, to build robust models with serum cytokine levels
and evaluate potential differences between healthy individuals and patients.

Our expectations for these tasks, in line with our hypotheses, are to find higher
levels of different pathogens to be predictive of AD, to encounter, through our models,
a TI cytokine profile for AD patients where we expect there to be enhanced production
of pro-inflammatory cytokines in priming conditions and decreased production of anti-
inflammatory cytokines in challenge conditions, and to find potential serum biomarkers
for AD. We also expect to be able to moderately predict TI cytokine levels based on
disease status, age and IB data.

In light of this, the document is structured as follows. Chapter 2, Biological The-
oretical Background, gives the reader the biological context for this thesis, including
notions of the pathophysiology of Alzheimer’s, the emergence of the infection hypothe-
sis and the various roles that immunological processes and proteins play in this disease.
Chapter 3, Machine Learning Theoretical Background, provides the knowledge nec-
essary to comprehend the elaborated work, presenting a general overview of what
is ML, what constitutes a traditional ML pipeline, the theory behind the algorithms
deployed in this project and lastly, a definition of Shapley values, our chosen tool for
model interpretability. Chapter 4, Literature Review, summarises earlier research that
is pertinent to this study, including ML models for predicting AD built with various
types of data with a focus on protein and other serum biomarkers, as well as, infectious
data approaches. Chapter 5, Methodology, detailedly describes the framework of this
project, from data provenance to parameter settings. Chapter 6 presents the results of
the work and Chapter 7 its critical discussion. Finally, Chapter 8 concludes the work
with a review of its findings, constraints, and suggestions for future research.
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2

Biological Theoretical Background

2.1 Overview of Alzheimer’s Disease and Pathophysiology

Alzheimer’s disease is a condition of progressive nature. Patients are often first diag-
nosed with mild cognitive and/or behavioural impairment which eventually progresses
onto AD dementia. Ongoing research has encouraged clinicians to diagnose AD earlier,
before patients progress to the dementia stage. This early and accurate detection of
symptoms and underlying pathology is crucial for effective screening, diagnosis, and
management of the disease for both patients and caregivers. However, early-stage de-
tection is challenging due to diagnostic difficulties, time constraints, and the tendency
to confound symptoms with normal aging [3]. In fact, the most important risk factor in
Alzheimer’s is age, with the majority cases of AD onset being after 65 years of age [24].

Pathologically, AD is typically defined by memory and learning impairment and
executive dysfunction which interferes with the daily life activities of the patient [25].
As far as neuropsychiatric symptoms, the most common ones in AD are depression
and apathy, with aggression and psychosis being core symptoms as well [26, 27]. As
the disease progresses, the patients may manifest further neuropsychiatric symptoms,
such as periods of disorientation and confusion and eventually, in later stages, delusion
and hallucination [28]. Whilst these symptoms are of primal concern, currently the
diagnosis of AD also heavily relies on molecular biomarkers. This form of dementia is
characterized by the accumulation of extracellular amyloid 𝛽 (𝐴𝛽) plaques, as well as the
accumulation of intracellular Neurofibrillary Tangles (NFT) of hyperphosphorylated
tau proteins leading to progressive neuronal loss and cerebral atrophy [12].

While several studies support and describe the central role of the accumulation
of 𝐴𝛽 plaques in the brain [13, 29], and of the accumulation of NFTs [30, 31], to date
the drugs that have targeted the inhibition of the aggregation/fibrillation of these
compounds have faced many challenges as potential treatments for AD. Despite their
molecular efficacies demonstrated both in vivo and in vitro, they often fail during clinical
trials, whether that is due to inadequate result or to adverse effects [16].

These challenges might be owed to the complex and multifactorial nature of AD.
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Whereas the amyloid cascade hypothesis is the most popular theory to explain AD
pathogenesis, and the cascade of tau toxicity has been proved to lead to neuron dam-
age, neuroinflammation and oxidative stress in brain, there are many other pathways
strongly associated with cognitive decline in this disease. Deficiencies in various sorts
of neurotransmissions are responsible for a plethora of neurodegenerative symptoms,
for example cholinergic and glutamatergic deficits for cognitive decline, the excitatory
and inhibitory neurotransmission dyshomeostasis for deficits in synaptic plasticity and
epileptiform symptoms, and the monoaminergic neurotransmission for neuropsychi-
atric symptoms [5].

2.2 Neuroinflammation and the Infection Hypothesis

One can not discuss the multifactorial aetiology of AD, without referring to the central
role neuroinflammation plays in its development. Neuroinflammation is defined as
the brain’s activation of the innate immune system, as a defence mechanism which
aims to protect the central nervous system (CNS) against infectious insults, injury,
or disease. This process is usually controlled and beneficial, with homeostasis being
restored once the threat has been eliminated [32]. However, in many neurodegenerative
disorders, such as AD, sustained neuroinflammatory processes are involved, potentially
contributing to progressive neuronal damage. Research has found neuroinflammation
to exacerbate 𝐴𝛽 and tau pathologies, as evidenced by increased microglia activation
observed in Positron Emission Tomography (PET) studies of AD patients. Elevated
levels of pro-inflammatory cytokines are also found in both serum and brain tissues of
AD patients post mortem. This response involves various immune cells and molecules,
such as glial cells, cytokines, and chemokines, as well as complement, which collectively
play an integral role in the onset and progression of AD [33].

Recently, an ongoing body of research has shifted its attention to infection as a
potential trigger for the neuroinflammatory processes observed in AD. The infection
hypothesis was firstly presented by Alois Alzheimer himself as a hypothetical causative
explanation for the disease, and it has resurfaced in the last decades when investigators
found that AD amyloid plaques contain remnants of HSV-1 viral DNA [17, 34–36].
This hypothesis posits that microbial pathogens, such as viruses and bacteria, might
initiate or exacerbate inflammation in the brain, thereby promoting the development
and progression of AD. Evidence supporting this hypothesis includes the previously
mentioned findings of microbial DNA in the brains of AD patients and the ability of
certain pathogens to induce 𝐴𝛽 plaque formation and tau pathology, mimicking the
hallmarks of AD. Exploring the infection hypothesis offers a compelling avenue for
understanding the multifactorial nature of AD as well as identifying a potential new
line of therapeutics to mitigate its progression [37].
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2.3 Infectious Burden and Alzheimer’s Disease

AD’s infection hypothesis has been linked to several pathogens. Amongst them are
several viruses such as HSV type 1, 2 and 6A/B, human CMV, Epstein-Barr virus,
hepatitis C virus, influenza virus, and severe acute respiratory syndrome coronavirus 2,
SARS-CoV-2. Various bacteria have been implicated as well, such as Borrelia burgdorferi,
Chlamydia pneumoniae, Porphyromonas gingivalis, Prevotella intermedia, Treponema pallidum,
Eikenella corrodens, Treponema denticola, and Helicobacter pylori, and even eukaryotic
unicellular parasites as is the case of Toxoplasma gondii [38].

For this project, 5 of these pathogens were selected, namely HSV (type 1 and type
2) (HSV-1/2), Helicobacter pylori, CMV, Chlamydia pneumoniae and Borrelia burgdorferi.

2.3.1 HSV and AD

The relationship between HSV and Alzheimer’s disease has been gaining track in
the latest decades, ever since, in 2007, researchers found DNA of the virus allocated
inside amyloid plaques of AD patients [35]. The Herpes Simplex Virus is a virus that
usually causes oral and lip infections (HSV-1) and genital infections (HSV-2), having
a productive phase where clinical symptoms may be expressed, followed by a latent
stage where the virus is allocated within sensory neurons. Reactivation from latency
can occur and result in recurrent infections [39]. Several studies indicate that infection
with this virus might be associated to the development of AD, especially in individuals
presenting the type 4 alleles of the apolipoprotein E gene (𝐴𝑃𝑂𝐸 − 𝜖4) [40–42]. The
hypothesis states that as HSV is reactivated from its latent form in the brain, due to
events such as stress and inflammation, its productive infection leads to consequent
damage which is likely greater in people with the 𝐴𝑃𝑂𝐸 − 𝜖4 gene. This cumulative
damage due to the recurrent nature of the reactivation of HSV is suggested to eventually
lead to AD [40].

2.3.2 Helicobacter pylori and AD

Helicobacter pylori is a gram-negative bacterium that inhabits the gastric environment
of over 60% of today’s world population [43]. Although this pathogen is mainly asso-
ciated with gastritis and gastric adenocarcinoma, recent research has established an
association between gut dysbiosis and several health issues, comprehending neuro-
logical abnormalities, such as AD. However, the precise mechanisms and pathways
involved in these neuropathological processes are not yet fully understood [44]. There
is emerging scientific evidence supporting that the ’gut-brain axis’ interaction between
the brain and the immune system is fundamental for the balance between homeosta-
sis and disease, specifically at neurological level. The "Trojan Horse" hypothesis is a
mechanism that has been described for several neurological disorders (including AD),
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where bacteria, such as Helicobacter pylori cross the blood brain barrier, reaching the
CNS, where they cause damage leading to neurodegeneration [45].

2.3.3 CMV and AD

Cytomegalovirus (CMV) is a virus from the Herpesviridae family, being known also as
human herpesvirus 5. Despite not usually yielding symptoms in healthy individuals,
post infection the virus remains in the host’s body and several factors can lead to
its reactivation. This pathogen has been linked to numerous neurological diseases,
amongst them Alzheimer’s disease [46]. Again, while the mechanisms of action
behind this association are not yet fully understood, it is suggested that the presence
of herpesvirus in the brain triggers the formation of extracellular amyloid plaques
and intraneuronal hyperphosphorylated peptide aggregates. On the other hand the
recurring nature of this infection leading to continuous immune response with a
consequent chronic inflammation, could also constitute the underlying mechanisms
leading to AD [47].

2.3.4 Chlamydia pneumoniae and AD

Chlamydia pneumoniae is an intracellular bacterium member of the genus Chlamydia,
responsible for acute respiratory disease [48]. It is one of the most consistent bacterial
infections detected in AD brains [49]. Research shows there are likely 3 major routes
for chlamydia to reach the brain and affect its biology. First, the systemic effect, when
chlamydia infection in specific organs triggers a body-wide response. Inflammatory
molecules and potentially even the pathogen itself might travel through the bloodstream
and reach the brain. Secondly, the aforementioned Trojan horse, in which Chlamydia is
carried to the brain by hiding inside immune cells. Lastly, the direct nasal infection, since
C. pneumoniae can directly infect the cells in the nasal cavity and a nerve connecting
the nose to the brain (the trigeminal nerve) might serve as a direct pathway for C.
pneumoniae to invade the CNS. Once the pathogen has reached the brain its potential
mechanistic pathways affecting AD development and progression are not unlike the
ones described before. Studies show it can lead to increasing 𝐴𝛽 production, the
presence of the 𝐴𝑃𝑂𝐸 − 𝜖4 gene might also facilitate its growth and attachment to
neuronal cells, it may downregulate levels of Sirtuin 1 (a protein with protective effects
against AD), it can increase MMP-9, an enzyme involved in triggering inflammatory
cascades in AD, and lastly chlamydia infection can activate the NLRP3 inflammasome,
a complex that promotes inflammation linked to AD [50].

2.3.5 Borrelia burgdorferi and AD

The spirochaete Borrelia burgdorferi is the pathogen responsible for Lyme disease, a tick-
borne disease transmitted enzootically between ticks and their hosts [51]. This pathogen
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is known to be neurotropic and can exist in the CNS for extensive periods eventually
resulting in brain atrophy, amyloid deposition, and slow progressive dementia. The
association between Borrelia and AD has been investigated for decades, with several
studies finding B. burgdorferi in AD brain tissues [52] and co-localized expression
of amyloid markers [53]. It is found that the chronic inflammation induced by this
bacterium may lead to abnormal phosphorylation of the tau protein, resulting in
microtubule dysfunction and formation of neurofibrillary tangles, all major hallmarks
of AD [38].

While the role that each of these microbial agents may play in the development and
progression of AD is of key interest, as well as their various mechanisms of action, from
chronic neuroinflammation, to amyloid-𝛽 peptide production, and neurodegeneration,
it is critical to consider the potential compounded effects of these pathogens when they
have infected the same host. Emerging research suggests that 𝐴𝛽 plaque formation
might be an immune response to microbial infection. It is posed that the interplay
between these pathogens can exacerbate the disease’s progression, while AD patients
are comprised of a weakened immune system and compromised blood-brain barrier,
being particularly susceptible to infections and potentially entering a perpetuate cycle
of neuroinflammation and neurodegeneration. This multifaceted pathogen hypothesis
could explain the complex and heterogeneous nature of Alzheimer’s disease, in which
the amyloid-centric approaches so far have yielded disappointing treatments [19].

2.4 Trained Immunity and Alzheimer’s Disease

Since we have explored the infection hypothesis for AD it is important to analyse the
body’s immune response observed in AD. The human immune system consists of two
principal stages of response: the innate immune response and the adaptive immune
response. On the first line of defence we have the innate immune response. Fast and
non-specific, it is mediated by cells such as monocytes, macrophages, dendritic cells,
natural-killer cells, among others. These cells detect molecular patterns associated to
pathogens and to damage, inducing the release of pro-inflammatory cytokines, such
as IL-6, IL-1𝛽 and Tumor Necrosis Factor-𝛼 (TNF-𝛼). These subsequently lead to the
activation of the adaptive immune response, a slower response mediated by memory T
and B lymphocytes that yields long-term immune memory [54]. The concept of trained
immunity challenges the idea that only the adaptive response possesses memory. It
describes functional long-term reprogramming of innate immune cells, giving rise to
altered, faster responses towards a second challenge by a pathogen, after the return
to a non-activated state. Despite this type of immune response being crucial for the
protection against infections, it has also been found to lead to aberrant inflammatory
activity in immune-mediated conditions and chronic inflammatory diseases [20].

In Alzheimer’s disease, it is hypothesized that innate immune cells (both peripher-
ally and in the brain) may retain memory of past stimulations, altering brain immune

7



CHAPTER 2. BIOLOGICAL THEORETICAL BACKGROUND

responses to 𝐴𝛽. This, in turn, might lead𝐴𝛽 to accumulate and the disease to progress.
However, since patients are exposed to a multitude of pathogens during their lifetime,
innate immune memory responses are expected to be heterogeneous, aligning with
clinical differences in disease progression. In pre-symptomatic and early stages of AD,
it is suggested that this trained immunity response may enhance pro-inflammatory
cytokine release and 𝐴𝛽 production, worsening brain damage. In contrast, at later
stages, persistent stimuli, such as 𝐴𝛽, may lead to trained tolerance with decreased
production of inflammatory cytokines, with the immune response shifting towards
maintenance and repair, though often ineffectively due to the maladaptive nature of
the response [22]. In fact a study, with a mouse model of AD pathology demonstrated
that peripherally applied inflammatory stimuli of Lipopolysaccharide S (LPS) induced
acute immune training and tolerance in the brain, leading to differential epigenetic
reprogramming of brain-resident macrophages (microglia) and found that immune
training exacerbates cerebral 𝛽-amyloidosis while immune tolerance alleviates it [21].

Since neuroinflammation is a central contributor to several aspects of AD pathology,
in order to unravel the complex mechanisms of trained immunity behind this disease, it
is crucial to look into cytokine signalling. Cytokines are soluble extracellular proteins, or
glycoproteins which play an important role as intercellular regulators and mobilizers of
cells involved in both innate andadaptive inflammatory hostdefences, angiogenesis, cell
growth, differentiation, and death, as well as development and repair processes meant
to restore homeostasis. While some cytokines are sometimes expressed constitutively,
most nucleated cell types normally produce them in response to harmful stimuli [55]. In
terms of biological function, cytokines mainly divide into two groups, proinflammatory
and anti-inflammatory. Pro-inflammatory cytokines such as TNF-𝛼, Interferon-𝛾 (IFN-
𝛾) or IL-1𝛽, mainly promote inflammation, whereas anti-inflammatory cytokines have
the role of suppressing the activity of said proinflammatory cytokines, as is the case of,
for example, IL-4, IL-10, and IL-13 [56]. In certain cases and infections, some cytokines
also exert regulatory functions, being involved in the control of immune responses
elicited by pro- and anti-inflammatory cytokines, ensuring the immune system doesn’t
overreact or underreact [57].

In the context of AD, multiple cytokines have been described to play an important
role in its pathogenesis. For this project, the focus was on 5 main cytokines, TNF-𝛼,
IL-6, IL-10, IL-1𝛽 and IL-1RA, while some others were looked at in the context of serum
biomarkers as will be discussed ahead.

2.4.1 Role of TNF-𝛼 in AD

The role of Tumor Necrosis Factor-𝛼 in AD remains rather puzzling, as some studies
focus on its inhibition as a potential therapeutic, whilst others demonstrate beneficial
roles for this protein. On one hand, higher Cerebrospinal Fluid (CSF) levels of TNF-𝛼
have shown correlation with reduced functional connectivity in the brain. Additionally,
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mice deficient in the receptor to this cytokine show decreased levels of 𝐴𝛽, lower
expression of inflammatory factors, CSF-blood barrier integrity, and preserved memory
compared to their control counterparts. On the other hand, a study showed an injection
of murine TNF-𝛼 into the hippocampus of mice, to reduce 𝐴𝛽 accumulation and
stimulate more microglial responses, suggesting TNF-𝛼 may play a role in plaque
clearance under specific temporal and spatial conditions [58].

2.4.2 Role of IL-6 in AD

Interleukin-6 is a proinflammatory cytokine, which is involved in the regulation of
haematopoiesis and the coordination of the innate and acquired immune responses. It
is fundamental in the regulation of metabolism, in neural development and survival,
while also participating in several cancerous processes [59]. In the context of AD,
studies have shown both serum and CSF IL-6 levels to be increased in AD patients,
correlating also with disease severity [60, 61]. IL-6 participates in early-stage 𝐴𝛽 plaque
formation in AD brains and has been implicated in tau phosphorylation, synapse loss,
and learning deficits in mice, with one study in particular reporting higher IL-6 levels
to be associated with smaller brain volumes in patients and lower cognitive scores.
In the same study, neutralizing IL-6 in AD mouse models enhanced metabolic issues,
memory, and decreased IL-6 levels [62]. An additional paper, found genetic variations
in the IL-10 and IL-6 genes to be associated with AD [63].

2.4.3 Role of IL-10 in AD

Interleukin-10 is one of the most important anti-inflammatory cytokines. It is produced
by various immune cells, and serves primarily to regulate and suppress inflammatory
responses [64]. In AD, lower serum IL-10 levels have been found to correlate with
CSF 𝐴𝛽 deposition. [65] One study concluded that loss of IL-10 activates microglia,
enhances IL-6, and leads to hyperphosphorylation of tau on AD-relevant epitopes in
response to acute systemic inflammation, induced by LPS stimulation [66]. Thus, the
role of IL-10 in AD remains complex and appears to have dual nature effects. On one
hand, low levels of IL-10 are associated with increased susceptibility to AD, and its
overexpression in the hippocampus of AD transgenic mice has been shown to boost
neurogenesis and cognition, indicating a possible neuroprotective role. On the other
hand, some contradictory studies suggested that IL-10 may worsen cognitive decline in
mice models. For instance, IL-10 genetic ablation in transgenic mice led to a reduction in
𝐴𝛽 plaques and cerebral amyloid angiopathy. Additionally, genetic variations in the IL-
10 promoter region have been linked to the development of amnestic MCI, a previously
referred precursor to AD [67]. Therefore, while IL-10 has potential neuroprotective
effects, its role in AD pathology is not straightforward and may vary depending on
specific genetic and molecular contexts.
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2.4.4 Role of IL-1𝛽 and IL-1RA in AD

Interleukin-1𝛽 is a proinflammatory cytokine from the IL-1 family. Interleukin-1 recep-
tor antagonist (IL-1RA), from the same family, is an anti-inflammatory cytokine, that
serves as an inhibitor of IL-1 proteins. In AD, both these cytokines are dysregulated and
display complex and multifaceted roles. IL-1𝛽 is important in normal brain functions
such as learning and memory, but at aberrant levels, it contributes to infection- and
inflammation-induced cognitive dysfunction through pathways resulting in neuroin-
flammation. This cytokine targets and activates a range of different cells, resulting
in a multitude of responses that contribute to neuroinflammation. In AD, IL-1𝛽 has
mediating roles in neuroinflammation that exacerbate the pathology of the disease,
but also acts as a protective factor, influencing the balance between beneficial and
detrimental outcomes. The importance of the modulating activity IL-1RA exerts over
IL-1𝛽 is illustrated by the fact that mice lacking IL-1RA presented worsened AD-like
pathologies. Furthermore, variations in the levels of IL-1RA and different IL-1 receptors
in the brains and blood of AD patients have been observed. Overall, whether and when
these cytokines have a beneficial or detrimental role in neuronal function in the course
of AD, and how their pathways function, is still a matter of intense and important
research [23].

2.5 Serum Biomarkers in Alzheimer’s Disease

Still in the context of trained immunity, it is rather important to look at these cytokines
as possible serum biomarkers. As previously mentioned, early diagnosis of AD can
significantly enhance the prognosis of the disease and research is actively striving to
discover and develop new techniques to reach this target. However, the current gold-
standard for AD diagnosis is the pathological analysis of brain tissues, a highly invasive
technique. Other alternatives for diagnosis constitute brain-imaging tests/devices,
such as Magnetic Resonance Imaging (MRI) devices and PET scans, as well as CSF
biomarkers, namely amyloid-beta isoform 42 (𝐴𝛽42) and phosphorylated tau. While
these techniques are effective in assessing patient status, they remain expensive, highly
invasive and uncomfortable for the patient [68]. Thus, serum biomarkers could offer
a form of diagnosis much less invasive, more accessible, and affordable, allowing for
wider and more repetitive screening, eventually improving patient outcomes through
earlier intervention.

Several studies have been conducted in this direction, focusing on several types of
molecules as potential biomarkers. Various research papers have shown the potential
of measuring serum tau protein levels as biomarkers for AD progression [69–71]. One
team of researchers interestingly found serum D-serine (an amino acid with cognitive
functions) levels to be altered in early phases of AD, presenting it as a prospective
precocious biomarker [72]. Micro RNAS (MiRNAs) have also been investigated as
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potential biomarkers, as is the case of serum miR-128 [73] and of miR-106b [74].
Nonetheless, cytokines remain an interesting group of molecules to consider as can-

didates for serum biomarkers in AD, since, as has been explored before, inflammatory
cytokines have been shown to be dysregulated in the brain and CSF of AD patients [75].
On this topic, one study found the Brain-Derived Neurotrophic Factor (BDNF) to be
decreased in the serum of AD patients, making this cytokine a potential candidate to
be used as a biomarker for early AD detection [76]. Blood IL-6 has also been established
as a risk factor in MCI patients for cognitive decline, with high levels of this cytokine
being linked to increased risk of AD diagnosis [75]. One meta-analysis comprising 44
studies, reported elevated levels of pro-inflammatory cytokines, such as IL-6, TNF-𝛼,
IL-1𝛽, Transforming Growth Factor-𝛽 (TGF-𝛽), IL-12 and IL-18 in the blood of patients
with AD, when compared to healthy controls [61]. A more recent review, encompassing
175 studies found (as well as the previous markers) IL-2, IFN-𝛾, C-reactive protein
and C-X-C motif chemokine ligand 10 (CXCL10) levels to be increased in AD patients,
adding that levels of IL-6 were inversely correlated with cognitive function [77].

To conclude, there is a fair body of research being conducted in this area with
promising results, however more research is still required to validate reproducibility,
sensitivity specificity and cost-effectiveness of serum AD biomarkers, with the goal of
improving diagnosis and early treatment of patients. Eventually, given the intricate
role of cytokines in orchestrating immune cell homeostasis and coordinating signal-
dependent immune responses, the use of cytokines as blood-derived diagnostic tools
is challenging, but the correlation of AD with an abnormal cytokine profile and/or
innate immune status could provide valuable insights in this field.
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3

Machine Learning Theoretical
Background

Having established the biological theoretical background of Alzheimer’s disease, its
relationship to infection, and the role of trained immunity in its pathogenesis, we turn
now to the theoretical framework of Machine Learning (ML). ML holds out powerful
tools for analysing complex biological data, including uncovering patterns and making
predictions that cannot easily be done by traditional statistical methods. ML methods
have been applied to large data sets with the purpose of finding biomarkers, predicting
disease course, and trying to understand mechanisms of disease in the context of
Alzheimer’s research. To that end, this shift towards ML theory will offer insight into
how advanced computational methods might be harnessed for the advancement of
knowledge and the general frameworks behind them.

3.1 Definition of Machine Learning and Basic Concepts

Machine learning is a specific branch of Artificial Intelligence (AI), in which algorithms
improve automatically by means of experience, making it particularly useful for solving
problems so complex that are beyond our human capacities. Typical scenarios for this
are tasks that are consistently carried out by living beings, but our reflection on how
we accomplish them is not detailed enough to enable us to derive a clear algorithm,
such as driving or speech recognition, and tasks that require vast amounts of data [78].
AI, a broader concept encompassing ML, refers to computers that mimic cognitive
functions we associate to the human mind, such as perception, reasoning, problem-
solving and, in fact, learning [79]. This brings us to a crucial question in today’s era:
"Can machines think?" This question, which centers on the ability of computers to
perform complex tasks that typically require human intelligence, has become a key
focus in the exploration and development of AI. The purpose of ML, in its essence,
however, is to learn an objective function, simply put, ML is about modelling data [80].

With this in mind, a key step of ML is data collection, this is electronic information
that will be made available for analysis, and it is usually represented in a structure
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known as a dataset [81]. A dataset usually assumes a tabular form. One observation
from a dataset is referred to as a data point or instance. An instance is a single
experiment, corresponding to each row in tabular data. It is composed of different
values for given attributes. These attributes are called features. A vector represents
the values of the various attributes of a certain instance. Below is a representation of a
dataset (D) with n instances and m number of features.

𝐷 =

𝑥11 𝑥12 · · · 𝑥1𝑚 𝑦1

𝑥21 𝑥22 · · · 𝑥2𝑚 𝑦2
...

...
. . .

...
...

𝑥𝑛1 𝑥𝑛2 · · · 𝑥𝑛𝑚 𝑦𝑛

(3.1)

A vector of observations (input to a model) can include features and labels (yi) as
well, also known as targets, which represent the model’s output. Whether the model
is or is not trained with this sort of labelled data defines its type of learning scenario,
that is, if we are presented with supervised or unsupervised learning.

3.1.1 Unsupervised Learning

Unsupervised learning involves scenarios where the target values are not known for
each observation, strictly speaking data is unlabelled, and the ML algorithm must
figure out some criteria to group similar inputs together. It can be viewed as finding
patterns in the data. Two classic examples of this type of learning are dimensionality
reduction and clustering [82].

3.1.2 Supervised Learning

In contrast, When a ML model is trained with labelled data, that is, the learner is given
specific input-output pairs, we are facing a supervised learning scenario [79]. In this
case, the purpose of the algorithm is to learn to yield the correct output given a new
input. The work presented in this thesis made use of supervised learning techniques.

Before we get ahead of ourselves, it has been mentioned that the model is trained
with some data. It is therefore important to clarify the notions of a training, validation
and test set when it comes to ML.

Training set: The portion of the dataset that is used to train the model. In supervised
learning, it consists of input-output pairs leading the model to learn the underlying
patterns and relationships in the data.

Test set: The portion of the dataset which is left out during the learning phase. It is
used to evaluate the model’s performance on unseen data.

When a trained model performs exceedingly well on instances used for training but
severely underperforms on new unseen samples we face a phenomenon called over-
fitting, that is to say the model does not generalize well [83]. To avoid this problem and
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find a model with an appropriate equilibrium between complexity and generalization
ability, we add another split to the data creating the validation set.

Validation set: A subset of the data used to select the appropriate values for
the hyperparameters of the model. It helps assess the model’s performance on an
additional layer of unseen data before the final test set, enabling the fine-tuning of
hyperparameters and reducing the risk of overfitting.

Overall, a model is considered a good model if it generalizes well, meaning it can
make good predictions on unseen samples, thus effectively learning the patterns and
relationships behind the data. This is the true value of a good ML model [78].

3.1.3 Classification vs Regression Problems

ML algorithms seek to solve two different types of problems:
Classification, in which the target values have a discrete or categorical codomain,

and are called labels or classes [78]. For instance, predicting a species of a flower based
on its features, or classifying tumors as malignant or benign. Classification tasks can
be further divided into:

1. Binary Classification: Where observations can only be categorized into two
possible classes (for example, if a tumor is benign or malignant) [84].

2. Multi-class Classification: Where there are more than 2 possible classes for the
target (such as predicting flower species) [84].

Regression, in which the target values are continuous and are called expected
outputs [78]. For instance, predicting the level of expression of a specific gene based
on distinct biological and environmental factors.

Since these problems are very disparate in their nature, the metrics to evaluate
models that fall in either of these categories are themselves also very distinct. Let us
start by expanding on the metrics for classification problems.

3.1.3.1 Estimating the Performance of a Classifier

The behavior of a classifier is often represented in a confusion matrix as the one shown
in Figure 3.1. This visualization displays the number of true predictions which are
divided into True Positives (TP) and True Negatives (TN), and false predictions, namely
False Positives (FP) and False Negatives (FN), made using labelled data. In ML context,
positive cases refer to instances that belong to the target class of interest, while negative
cases are those that do not belong to this class.

TP represent instances correctly predicted as belonging to the target class, while
TN refer to cases that are correctly identified as not belonging to the target class. In
contrast, FP occur when the model incorrectly predicts a negative instance as positive,
that is when the instance does not belong to the target class however the algorithm
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categorizes it as so, and FN arise when the model fails to identify target class instance,
predicting it as negative instead.

On the left side of the matrix of Figure 3.1 are represented the cases that the model
predicted to be positive (TP + FP), for example the cases where a model predicted
a patient to have a certain disease. On the right side are the ones predicted to be
negative (FN + TN), in the previous example, subjects the model predicted to be
healthy. Whereas, the upper row of the matrix encodes the cases that are known to be
positive (TP + FN) (cases where the subjects actually have the disease) and the bottom
row encodes the ones known to be negative (FP + TN) (cases where the subjects don’t
present the targeted disease). In this way, correct predictions are represented in green
and incorrect in red.

The performance/ quality of a classifier can be numerically quantified by a variety
of metrics which make use of the aforementioned TP, TN, FP and FN. These metrics
are accuracy, precision, recall, f1 score, specificity and negative predictive value and
are graphically encoded on Figure 3.1.

Figure 3.1: General representation of a confusion matrix and classifier error metrics.
(Reprinted from [85]).

The most popularand simple form to estimate the predictive ability of a classification
model is accuracy, that is, the number of correctly classified instances [78], as shown in
the formula presented in Figure 3.1.

While this a powerful measure to assess the performance of the model, it might
not be sufficient to understand its quality and behavior. For example, in a dataset
where one class dominates, a high accuracy might simply reflect a model who is only
predicting majority class, completely disregarding the minority class. Precision and
recall, on the other hand, are two of the most widely used metrics to assess a classifier’s
effectiveness [86]. Precision expresses the number of correct positive predictions (TP)
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belonging to a class, divided by the total number of positive predictions (TP + FP), it
indicates how often a ML model is correct when predicting the target class [87]. Recall
(also called sensitivity) is the number of accurate positive predictions (TP) divided by
the total number of positive (P), it shows whether a ML model can find all objects of the
target class [87]. The F1 score combines both precision and recall into a single metric,
providing a balanced measure of a model’s performance [88]. Its formula can be found
on Figure 3.1. All these metrics vary between 0 and 1, the closest to 1 the better the
classifier.

Lastly, the Area Under the Curve (AUC) and Receiver Operating Characteristic
(ROC) curve are also widely used metrics in binary classification. The ROC curve, as
represented on Figure 3.2, plots the true positive rate (TPR) against the false positive
rate (FPR) of the classifier at different threshold levels of a model’s hyperparameter.
AUC represents the area under this curve, ranging from 0 to 1. The diagonal line in the
figure represents the ROC curve of a random predictor, with an AUC equal to 0.5. AUC
measures the discernibility of the model, a higher AUC indicates better performance,
with 1 representing perfect discrimination (the best possible predictor would yield a
point in the upper left corner, with coordinates (0,1)) and 0.5 indicating performance
similar to random guessing. It is valuable for evaluating classifier performance across
various threshold settings and crucial for understanding a model’s discriminatory
power [78].

Figure 3.2: ROC curve example for a binary classifier. AUROC is represented in light
blue. (Reprinted from [78]).

3.1.3.2 Estimating the Performance of a Regressor

While classifier metrics focus on counting how many instances were correctly predicted
to assess performance, regression tasks don’t require such counts since the target values
are continuous. Instead, performance is evaluated by measuring the difference between
predicted and actual values, providing a clear understanding of how far predictions
deviate from the desired outcome. Although the general preference for these metrics
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is ever-changing, some of the most commonly used metrics for regression problems
are the (root) mean squared error (MSE and RMSE), Mean Absolute Error (MAE), the
Median Absolute Error (MdAE) and the Pearson correlation coefficient (R) [89]. The
study conducted in this thesis employed MdAE as the error measure for regression
problems, along with its standard deviation. Pearson’s correlation coefficient is also
one of the key metrics considered for evaluation of the presented models, MAE is also
presented.

The MAE is a metric used to measure the average magnitude of errors in a set of
predictions. Being absolute, it does not consider the direction of the errors, but it gives
an idea of how close, on average, the predictions of the model are to the actual values.
In this project, however, we mainly consider the MdAE, which despite having similar
formulation, considers the median of the errors and not the mean, resulting in a metric
more robust to outliers [90]. This metric also does not assume any specific distribution
of errors, unlike metrics such Root Mean squared Error (RMSE), which assumes a
Gaussian distribution [91]. The formulation of the MdAE is hereby represented as:

MedAE = median
(
|𝑦1 − 𝑦̂1|, |𝑦2 − 𝑦̂2|, . . . , |𝑦𝑛 − 𝑦̂𝑛|

)
(3.2)

where:

• 𝑦𝑖 are the actual values.

• 𝑦̂𝑖 are the predicted values.

• 𝑛 is the number of samples.

The standard deviation of the MdAE is also presented. Lastly, the Pearson correla-
tion coefficient (R) is a measure of the linear correlation between two sets of data points,
in this case one set is composed of the predictions output by the model and the other
is composed of the real values of the target variable. The formulation of this metric is
represented in equation 3.3, but, in sum, it is a metric that varies between 0 and 1 and
represents how well our model correlates to real values. The closer R is to 1, the better
its predictive performance [89].

𝑅 =
Cov(𝑟, 𝑝)

Std(𝑟) · Std(𝑝) (3.3)

where:

• Cov(𝑟, 𝑝) denotes the covariance between the actual values 𝑟 and predicted values
𝑝.

• Std(𝑟) and Std(𝑝) represent the standard deviations of the actual values 𝑟 and
predicted values 𝑝, respectively.
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3.2 Data Preprocessing in Machine Learning

Having established the basic concepts of ML required for this project, one ought to
refer the basic steps a typical ML pipeline consists of, which are divided into 5 main
categories [78].

• 1. Preprocessing the data

• 2. Choosing the algorithm and respective parameters

• 3. Estimating the predictive error on the validation set

• 4. Training the final model

• 5. Evaluating the final model

While these steps are not independent, nor even necessarily linearly sequential, a good
starting point is with preprocessing the data, which will be explored in the next sections.
This pipeline is essential in the outcome of ML algorithms following the "garbage in,
garbage out" (GIGO) principle, which establishes that the quality of the output of a
model is directly dependent on the quality of its input [92].

3.2.1 Data Cleaning and Normalization

The importance of data preprocessing is widely accepted as a major step in affecting ML
outcomes [93], as evidenced by the aforementioned GIGO principle. Firstly, it is crucial
to select the appropriate features for the desired task, then it is essential to convert
the instances on the raw data into appropriate data types (as many ML algorithms
expect numerical inputs), furthermore it is important to remove unwanted (duplicate
or empty) rows or columns of the dataset [94]. These primary steps describe the data
cleaning process. After these, data normalization or standardization usually follows.

Data normalization is a pre-processing approach that consists of scaling or trans-
forming the data in order to make an equal contribution of each feature. It does this by
transforming the data to comparable dynamic ranges [95]. The two most common data
scaling techniques are the standard scaler (which centers the data around the mean
0, with a standard deviation of 1) and the Min-Max scaler (which scales each feature
to a given range, usually [0, 1]) [96]. There is no general consensus on which of these
methods is better [97]. In the context of this project Min-Max scaler was used where,
for each feature, the smallest value becomes 0, the largest value becomes 1, and all
other values are scaled to be between this interval [98], as shown in equation 3.4.

𝑋′ =
𝑋 − 𝑋min

𝑋max − 𝑋min
(3.4)

where:

• 𝑋 is the original value,
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• 𝑋′ is the scaled value,

• 𝑋min is the minimum value of the feature,

• 𝑋max is the maximum value of the feature.

Along with the general advantages of scaling the data, such as enhancing the
model’s performance and interpretability, attributing equal importance to features
and improving a dataset’s resilience to outliers, Min-max scaler offers the primary
advantage of keeping the original distribution’s shape of the data while adapting the
values to a predefined range [99]. This proves useful when working with datasets that
contain outlier values or show a wide range of scales in its features [100].

3.2.2 Handling Missing Values and Imputation Strategies

Real-world data is often messy and incomplete, with missing values being a common
challenge in any type of data-centric work. Missing data can arise for various reasons
and present significant issues as it may lead to biased results, reduce overall quality of
analysis and moreover, some algorithms are not equipped to deal with these missing
values [101]. One can address this issue from two perspectives. One is the feature
selection perspective, when dealing with datasets with several features, it is common to
eliminate features that exceed a certain threshold of missing values, typically applying a
50% cut-off [102]. The other is the row elimination perspective, wherein after removing
features with high missing value rates, we may still encounter rows with missing data.
While some approaches eliminate these rows, this can be problematic, especially with
small datasets. To address missing values without losing valuable data, common
imputation methods include mean, median and mode imputation. In this approach,
the missing values are replaced with the chosen measure for each feature. Overall,
while there are more advanced and complex methods being developed, this simple
imputation technique, proves effective and much less computationally expensive, whilst
enabling further analysis [103].

3.3 Dealing with Small Datasets

One scenario where the management of missing data is particularly critical, is when
working with small datasets, specifically within the medical field. One important factor
in a ML model’s performance is its dataset size. Bigger datasets often perform better,
especially in classification, while smaller datasets may lead to over-fitting. This is
usually the case since a larger dataset offers more comprehensive information, allowing
the underlying model to discern intricate patterns, thereby improving its generalization
abilities [104]. However, in reality, gathering medical data is fraught with difficulties
because of patient privacy, a lack of instances due to the uncommon nature of certain
illnesses, as well as organizational and legal issues [105]. This is a problem encountered
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during the course of this thesis. Nonetheless, working with available medical data
remains of huge scientific interest and can still provide valuable insights and novel
findings. Thus encountering the most appropriate ways to handle these limited size
datasets is of utmost importance.

3.3.1 Cross-Validation

Before advancing on to the theoretical background behind the algorithms chosen for
this project, let us discuss point 3 of the ML pipeline, estimating the predictive error,
which makes use of the validation set.

In ML, data is traditionally partitioned at the outset to create training, validation,
and test sets with sufficient instances for each [96]. However, in the case of small
datasets, the situation grows nuanced. In the established train/validation split, the
idea is using a single set of data (the training data) to develop a predictive ML model,
next to employ a second set of data (the validation data), the labels of which are
known but not disclosed to the predictor, in order to test different hyperparameters
of the model and estimate its error rate. It should be noted that since the ML model
is not trained using the entire sample, there is a loss of efficiency [106]. On the other
hand, cross-validation works by dividing the dataset into multiple subsets or "folds."
The model is trained on a combination of these folds and tested (or validated) on the
remaining "left-out" fold. This process is iterated multiple times, with each fold serving
as the validation set once. The results from each iteration are then averaged to provide
an overall performance estimate. This method helps ensure that the model generalizes
well to new, unseen samples and that is not just directly overfitting to the data [107].

3.3.1.1 Nested Cross-Validation Grid-Search for Hyperparameter Tuning

A common feature among nearly all ML methods is the presence of hyperparameters
(external model settings or configurations that affect the model’s performance and
training process). In order to operate, hyperparameters for modern supervised ML
algorithms must be configured. To do so, there are three strategies. The user can
either apply the software package’s default values, manually configure the settings, or
execute a tuning process to achieve optimal predictive performance [108]. The latter
option is often the most advised, and it is usually achieved using a nested cycle of
cross-validation, where the data is split into multiple partitions, ensuring that the final
selected hyperparameters perform well across different subsets of the data [78].

An emerging strategy when working with small datasets, where it is not possible to
leave out a significant amount of samples for the test set, is to perform hyperparameter
tuning by means of a nested cross-validation [109]. A 2 loop strategy which performs
a grid-search of optimal hyperparameters in an inner loop and estimates model per-
formance on an outer loop [110], as can be seen in Figure 3.3. As illustrated, in the
outer loop of this method the original dataset is split into multiple folds where, per
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iteration, each fold serves as the test set (represented in blue) while the others compose
the training set. Within each training set, the inner loop further splits the data into
training and validation folds (represented in orange). This inner loop is responsible for
the hyperparameter tuning, as a grid-search is performed over different combinations
of said parameters in the training folds, following the selection of the combination hat
minimizes validation error. This optimized hyperparameters are then applied to the
outer loop’s training set, and the model’s performance is assessed on the test fold. The
process is iterated across all folds, and the results are averaged to provide an estimate
of the model’s generalization performance.

Figure 3.3: Schematic representation of nested cross-validation. (Reprinted from [110]).

One of the major drawbacks of this algorithm is that it does not result in one single
final model, but rather various models, due to the different splits of the data. However,
when assessing how well the data can be modelled by a given method, researchers
have found this procedure to provide a nearly unbiased estimate of the true error [109].
Furthermore, if it is possible to initially set aside a test set, even of a relatively small
size, it can be used later to evaluate and finalize the model, with the already optimized
combination of hyperparameters.

3.3.2 Oversampling Techniques

On the topic of imbalanced and small datasets, a crucial technique to address class
imbalance and data scarcity is oversampling. An imbalanced dataset, in the context
of ML, is one where the distribution of target outcomes is unequal. This is primarily
a concern in classification tasks, where certain classes may have significantly more
instances than others. However, it can also occur in regression when the target values
are skewed, leading to a concentration of observations in specific ranges while leaving
others sparsely populated [111]. This issue is troublesome because it is associated with
misclassification, where the minority (less represented) class (or less represented range
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of values in the case of regression) tends to be misclassified or less captured by the algo-
rithm, as compared to the majority (more represented) class/ range [112]. Two primary
sampling techniques to address this question are undersampling and oversampling,
where samples are either added to the minority class or decreased from the majority
class. The case of oversampling is beneficial to small datasets as it consists in adding
samples to the minority class. Oversampling techniques fall into two categories, syn-
thetic oversampling and random oversampling. To expand the size of a minority class,
the random oversampling approach replicates existing minority samples. The syn-
thetic oversampling approach creates new synthetic samples for the underrepresented
class [113]. The Synthetic Minority Over-Sampling Technique (SMOTE) and Synthetic
Minority Over-Sampling Technique for Regression with Gaussian Noise (SMOGN)
algorithms fit within this latter category, and will further explained in the methodology
part of this thesis (Chapter 5).

3.4 ML Algorithms Deployed in This Project

If the goal of this project is to build ML models that form accurate predictions, a
crucial part of this process is selecting which algorithms to deploy. This brings us to
the No Free Lunch Theorem posed by David Wolpert in 1995 [114]. Extrapolating to
the purpose of ML, this theorem states that if averaged on all possible problems, the
generalization ability of all ML algorithms is the same. Therefore, there can not be
a "super algorithm" which outperforms all other algorithms on all the problems and
thus, selecting the best algorithm is a challenge every time we are presented with a
new problem or system to model. Hence, the most appropriate way of choosing the
ML algorithm for the task at hand is by means of heuristic/informal processes, based
on our knowledge of the algorithms and the exploration of several strategies [78].

The No Free Lunch theorem is central to the methodology of this thesis, which
is why several algorithms were evaluated on each of the tasks, before selecting the
most effective one. This process included applying linear regression (with and without
penalties), logistic regression (for classification tasks), decision trees, random forest,
support vector machines, K-nearest neighbors, and extreme gradient boost to the
data. These algorithms are particularly advantageous due to their adaptability to both
regression and classification tasks.

3.4.1 Linear/ Logistic Regression

Linear and Logistic Regression are fundamental techniques in statistical modelling and
ML. Linear regression, is used for predicting a continuous target variable based on
one or more independent variables. Providing the simplest and also one of the most
popular forms to model regression data, it assumes a linear relationship between the
input variables and the target [115]. Its goal is to find the coefficients of the linear
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relationship that minimize an error measure (also known as loss function), between
the observed and the predicted values [116]. This method is frequently introduced
in statistics courses, but is equally prevalent in ML contexts due to its effectiveness
and ease of interpretability. The general formulation for this technique is presented in
equation 3.5.

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + · · · + 𝛽𝑝𝑥𝑝 + 𝜖 (3.5)

Where:

• 𝑦 is the dependent variable (response),

• 𝑥1 , 𝑥2 , . . . , 𝑥𝑝 are the independent variables (predictors),

• 𝛽0 is the intercept term,

• 𝛽1 , 𝛽2 , . . . , 𝛽𝑝 are the coefficients (regression coefficients),

• 𝜖 is the error term (residuals), that is the difference between the observed and the
predicted value..

In contrast, logistic regression is employed when predicting a categorical target
variable. Instead of forecasting a continuous value, logistic regression uses the logistic
function, which maps any real-valued number into the [0, 1] interval, to represent the
likelihood that a given input belongs to a specific class. To achieve this, it makes use of
log odds (logit), which is the natural logarithm of the odds of an event occurring [78].
Hence the model can be formulated as:

ln
(

𝑝

1 − 𝑝

)
= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + · · · + 𝛽𝑝𝑥𝑝 (3.6)

Where:

• ln
(
𝑝

1−𝑝

)
represents the log odds of the event probability 𝑝,

• 𝑝 = 𝑝(𝑦 = 1 | x) is the probability of the event given the input vector x,

• 𝛽0 is the intercept term,

• 𝛽1 , 𝛽2 , . . . , 𝛽𝑝 are the coefficients corresponding to the inputvariables 𝑥1 , 𝑥2 , . . . , 𝑥𝑝 .

3.4.1.1 Lasso Regression or Logistic with L1 Penalty

Lasso Regression and Logistic Regression with L1 penalty are powerful techniques,
that build upon the previously mentioned algorithms, to improve model performance
and reduce overfitting. Lasso Regression, or Least Absolute Shrinkage and Selection
Operator, is a type of linear regression that includes a L1 regularization term in its cost
function [117]. This penalty imposes a constraint on the model’s parameters, shrinking
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them towards zero, by forcing the absolute sum of the model’s coefficient to not be
greater than a given predefined value (𝜆). This makes the model less complex and
easier to interpret [118]. Logistic regression with an L1 penalty, also known as Lasso
Logistic Regression, serves a similar purpose for classification tasks, with the same L1
penalty being applied. Overall, as this penalty leads to the creation of a sparse model,
Lasso tends to perform better when only a few variables are relevant for the predictions
of the model [78].

3.4.1.2 Ridge Regression or Logistic with L2 Penalty

Ridge Regression and Logistic Regression with L2 penalty constitute the other type of
regularization techniques applied to linear/logistic models. Ridge Regression, alike
Lasso regression also includes a regularization term in its cost function which penalizes
large coefficients, leading effectively to their shrinkage [119]. However, this penalty
which is proportional to the sum of the squared coefficients of the model, does not
encourage sparsity in the coefficients, instead, the L2 penalty aims to minimize the
overall size of the coefficients while keeping them in the model, making the values
small, but not forcing them to equal zero. In fact, in Ridge, the coefficients of correlated
variables are usually rather similar to each other, consequently this technique usually
works best when most variables have a significant impact on the target [78].

3.4.1.3 Elastic-Net Regression or Logistic with L1 and L2 Penalties

Elastic-Net (EN) Regression and Logistic Regression with combined L1 and L2 penal-
ties compose a hybrid technique that blends the strengths of both Lasso and Ridge
regularization methods. In this technique, a combination of the L1 and L2 penalties is
introduced, as a hybrid penalty that allows for both coefficient shrinkage (as in Ridge)
and variable selection (as in Lasso), surpassing the limitations of applying just one of
these strategies. Elastic-net performs particularly well in high-dimensional datasets,
when the number of predictors is much larger than the number of samples in the data
[120].

3.4.2 Decision Trees

Decision Trees (DT) are versatile and intuitive predictive models that can be applied
for both classification and regression tasks in ML. Given a training set, these models
are represented by a tree-like structure where each internal node constitutes a feature,
and each edge represents one possible value for that feature. Leaves (terminal nodes)
contain target values, and a prediction is made by following the path from the root node
to a leaf [78]. This process results in a highly interpretable model since the decision-
making process can be well visualized and understood (particularly in classification
scenarios). The algorithm’s adaptability to both categorical and numerical data is one
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of its strengths, as well its need for little data preprocessing, however it is prone to
overfitting, especially when the data leads to the formation of complex trees [121]. This
has led to the development of multiple trees algorithms, namely random forest.

3.4.3 Random Forest

Random Forest (RF) is a learning technique that combines several DTs, gaining in
performance and stability and forming a robust predictive model. This algorithm
works by creating numerous DTs during training, whose output is aggregated into a
single prediction using voting (mode) in classification tasks or averaging when is the
case of regression [122]. To provide diversity among the trees and reduce overfitting,
a random subset of the training data and a random subset of characteristics are used
to build each tree in the forest. This randomness combined with the aggregation of
multiple trees result in a model that is accurate and resilient to data noise [123]. One
of the great advantages of RF is its ability to bring to light meaningful interactions and
non-linear relationships in the data, and they are particularly effective when dealing
with high dimension datasets [124]. However, this comes at the cost of being very
computationally expensive, especially as the number of trees in the forest increases.

3.4.4 Support Vector Machines

Support Vector Machines (SVM) are a classic type of ML algorithm used for both
classification and regression tasks. In the case of classification, this algorithm works by
mapping data points (observations) to a high-dimensional space and then finding the
optimal hyperplane that maximally separates these data points into different classes.
This hyperplane is chosen by the largest margin rule, meaning it is the hyperplane with
the greatest distance between itself and the closest data points from either class. This
rule helps to improve the model’s generalization power. For non-linearly separable
data, non-linear SVMs employ kernel functions, such as polynomial or Radial Basis
Function (RBF) kernels, which transform the input space into a higher-dimensional
space allowing for linear separation [125].

In regression, SVM works mildly differently. It is a generalization of the classi-
fication problem, in which the model finds not a hyperplane that separates classes,
but a function that approximates the relationship between the input features and the
target variable. Instead of maximizing the margin between classes, Support Vector
Regressor (SVR) finds a line (or hyperplane) that best fits the data points, allowing for a
margin of tolerance (𝜖) within which the model’s predictions are considered acceptable.
The algorithm does this while also keeping the model’s coefficients small to prevent
overfitting, balancing good fitting of the data with model simplicity [126]. Overall
this technique is rather computationally expensive and one of its key limitations is its
sensitivity to noise or outliers in the dataset, but it is also growingly popular and has
proven successful in various fields and tasks [127].
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3.4.5 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a simple yet effective ML algorithm applicable to both
classification and regression tasks. In the case of classification, it classifies a data point
based on its 𝜅 nearest neighbors’ majority label. A neighbor is one of the 𝜅 closest
training examples, used to make predictions about a new data point. In the case of
regression, the continuous value output by the algorithm is based on the average
values of said 𝜅 closest neighbors. 𝜅 is a crucial parameter of the algorithm as is
the metric used to calculate the distance between the data points [128]. Despite its
simplicity, KNN has proven successful in a large number of domains, competing with
more sophisticated methods in their generalization ability. Nonetheless, it presents
some drawbacks, such as its performance’s heavy reliance on the choice of parameters
(namely 𝜅 and distance metric), and its hampered reliability in classification when
class labels are balanced among neighbors and in regression when the variance of the
selected neighbors’ outputs is high [78].

3.4.6 Extreme Gradient Boost

Extreme Gradient Boost (XGB) is a sophisticated combined learning model, alike
random forest, which combines the strengths of various weaker models, such as DTs, to
create one single and powerful predictor. It is an implementation of gradient boosting
trees known for its speed and high performance [129]. To make matters simple, XGBoost
starts by creating a single simple model (one decision tree) and it follows a sequential
approach, building subsequent trees whose focus is on correcting the errors of the
previous trees. It repeats this process iteratively with each new tree progressively
improving the overall accuracy or diminishing the error of the ensemble. It improves
on traditional gradient boosting techniques by incorporating regularization techniques
which prevent overfitting and lead to higher interpretability [130]. It is currently one
of the most widely used ML algorithms both in industry and academia, due to its
robustness, speed and high performance, producing high-quality models even when
applied to a range of difficult ML tasks [131].

3.5 Interpretable AI

Lastly, even after successfully training and evaluating an accurate and robust model, we
are still faced with a hefty challenge: why is the model good? This is the notorious black-
box problem. A black-box model, is one that does not reveal its internal mechanisms,
that is to say it can not be interpreted by simply looking at its parameters/coefficients
and thus, we do not know how it made its predictions [132]. Of the models described
previously, the black-box models are: RF, SVM, and XGB, while the others can be fairly
easily interpreted.
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Interpretability, the ability for something to be explained or presented in under-
standable terms to a human, is often disregarded in ML. Nevertheless, there are
dire reasons for its importance, namely scientific understanding, safety, ethics and
case-by-case decision clarifications when necessary [133]. If these can be of use in any
field, in the field of biomedicine, interpretability becomes essential. Where adding
to the evident need for safe and ethical use of these systems, there is the promising
opportunity to conduct knowledge discovery by using the predictive model’s learnings
to produce new theories regarding unidentified biological pathways [134].

3.5.1 SHAP values

This consideration brings us to the concept of SHapley Additive exPlanations (SHAP)
or SHapley Additive exPlanations [135]. SHAP values are a game theory approach
to interpretable ML. They provide explanations to the output of any ML model by
assigning an importance value to each of its features representing how relevant said
feature is to the model’s prediction.

The theory behind this tool stems, as mentioned, from game theory. In 1951, Lloyd
S. Shapley devised a theory that allowed for a fair distribution of a game’s pay-out
among players with different skills who worked together [136]. Translating this idea
to ML terms, the "game" is the prediction task at hands, the "pay-out" is the model’s
output and the "players" are the model’s features. SHAP values compute the marginal
contribution of each feature by averaging its impact across all possible ways the features
can be combined. This is done by evaluating the model’s prediction with and without
each feature across different coalitions of features, which are weighted based on their
representativeness, giving priority to those that showcase independent behavior or
interaction effects. Subsequently, these marginal contributions are averaged giving us
the feature’s SHAP value [132]. This process can be done for each prediction of the
model, allowing for a case by case interpretation of feature importance, but SHAP
can also provide a global explanation for the model by aggregating several individual
predictions (for instances, all predictions made on the test set).

SHAP has a few interesting properties which makes it such a powerful tool for
explainable AI [137].

1. Model Independence: SHAP values are model-agnostic, meaning they can be
used to interpret any ML model.

2. Efficiency: The total sum of Shapley values or the marginal contribution of each
feature should be equal to the value of the total coalition.

3. Symmetry: If two features contribute equally to a prediction, they are assigned
the same SHAP value.
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4. Dummy: SHAP values are zero for missing or irrelevant features for a prediction.
This means that the Shapley value of a feature is zero if, independent of the
coalition group, it does not alter the prediction.

5. Additivity: SHAP values are additive, which means that the contribution of
each feature to the final model output can be computed independently and then
summed up.

The SHAP framework includes several model-specific explainability methods such
as LinearSHAP for linear models, TreeSHAP for tree-based algorithms and DeepSHAP
for deep learning algorithms. However, there is one method that is designed to provide
explainability forany type of model, which is appropriate when we are exploring several
different algorithms in the aims to find the best model. This method is Kernel SHAP
[135], which approximates Shapley values by solving a weighted linear regression
problem. The idea is to fit a linear model to the predictions of the original model,
where the assigned weights represent the contribution of each feature. This permits a
flexible interpretation of any kind of model. Importantly, the use of weighted linear
regression does not limit Kernel SHAP to either regression or classification problems,
it is applicable to both. Regardless of the nature of the task, the weights assigned
reflect how much each feature contributes to the prediction, whether that prediction is
a continuous value in regression or a probability in classification [137].

While computing SHAP values is highly beneficial, their utility is much enhanced
when translated into visualizations. The SHAP Python package [135] is particularly
valuable in this regard, as it offers a range of intuitive and accessible visualizations that
support both local and global interpretability. In the case of global interpretability, the
most common plots are the feature importance bar plot (Figure 3.4) and the summary
plot (Figure 3.5). The first one displays the features in descending order of importance
and the x-axis represents the mean absolute Shapley values therefore not showcasing
whether the feature impacts the prediction positively or negatively. The summary plot
is more detailed. In the case of the beeswarm plot as shown in Figure 3.5, every dot
on the plot represents a single sample of the data. The features are also ordered by
importance and the horizontal axis represents the SHAP value, yet there is an added
layer of information, as the color of the dots encodes the magnitude of the feature for
that observation. Usually higher values are represented in red and lower values in blue.
Hence, we can assess how higher and lower values of the features impact the result
and in which direction. In the example of Figure 3.5 higher latitudes and longitudes
have a negative impact on the prediction, while lower values have a positive impact.

Lastly, it is important to highlight the main advantages and disadvantages of
this method. As far as disadvantages, computing Shapley values can be quite time-
consuming, however, this drawback is not significant when working with rather small
datasets. Additionally, sometimes Shapley values are misinterpreted. One must keep
in mind that the Shapley value of a feature is not the difference of the predicted
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Figure 3.4: Example of a SHAP feature importance bar plot for global interpretability.
Reprinted from [138].

Figure 3.5: Example of SHAP beeswarm summary plot for global interpretability.
Reprinted from [138].

value when the feature is removed from the model training, but rather represents the
contribution of a feature to the difference between the actual prediction and the mean
model’s prediction. Lastly, SHAP only provides explanations for the current model
and its observations, it does not have prediction power if you change the input. For
example in a model predicting credit score, one could not use SHAP to extrapolate a
conclusion such as "If I were to earn =C500 more a year, my credit score would increase
by 5 points" [132].

On the topic of its advantages, there are all the properties already listed, particularly
the fact that SHAP can be applied to any kind of model. Furthermore, SHAP allows
for contrastive explanations, meaning a prediction does not have to be exclusively
compared to the average prediction of the complete dataset, but can be compared to
a subset or a single observation. Finally, SHAP is the only theory-based explanation
technique for AI. There are several axioms (efficiency, symmetry, dummy, additivity)
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supporting it, which gives it a robust foundation and makes it an increasingly popular
method in current research [132].
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4

Literature review

This chapter aims at reviewing the current works that inspired this thesis, namely
what has been done on the field of machine learning and Alzheimer’s disease. Section
4.1 summarizes research presenting predictive models for AD based on MRI imagery
and PET data. Section 4.2 explores alternative data approaches for building this
models, focusing on work conducted with cytokine biomarkers and other proteins, and
infectious data. Finally, Section 4.3 presents an overview of papers related to predicting
cytokine levels.

4.1 MRI and PET-Based Models

In recent years, the advent of ML has revolutionized the field of medical diagnostics,
offering novel methods for predicting the onset and progression of several diseases with
increasing accuracy and reliability. Inevitably, with AD being one of the most prevalent
diseases of the 21st century [25], various works have focused on this neurological
condition.

While there is a plethora of data that can be used to train these intelligent systems,
the most common approach is through medical imaging. with two primary types being
utilized: Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET).
MRI is a popular non-invasive imaging method that helps detect physical changes
linked to AD by creating detailed images of the structure of the brain by means of
magnetic fields and radio waves [139]. Conversely, PET is a nuclear medicine imaging
technique that uses the detection of pairs of gamma rays indirectly released by a tracer
to visualize functional processes in the body, including the brain [140]. Given the
importance of these imaging techniques, naturally a vast body of research has been
conducted, exploring their use in cohort with ML models.

Firstly, on the topic of MRI-based models, many algorithms have been deployed
to this extent, with Artificial Neural Networks (ANN)s (one of the most complex and
popular ML methods) being a leading choice for modelling this type of data. Castelazzi
et al., [141] designed an ANN model capable of distinguishing between AD and another
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type of dementia (vascular dementia), based on this type of imagery, with over 84%
accuracy. Another study, by Salehi et al. [142] developed a Convolutional Neural
Network (CNN), a type of ANN algorithm specifically designed to process and analyse
visual data, for the classification of AD using MRI images. This study comprised the
data of over 5000 subjects and achieved an outstanding accuracy of 99%. However, as
mentioned, ANNs aren’t the only models being exploited for this kind of task. A team of
researchers led by Long et al. [6] has been able to create a SVM model that discriminates
patients with AD or MCI from healthy elderly, and predicts AD conversion in MCI
patients with accuracies surpassing 90% for the first task and rounding 88% for the
latter. All these studies show promising results for the advancement of more accurate
AD diagnostics by means of this type of imagery data.

Shifting into ML models constructed with PET data, in this field, several algorithms
have been leveraged. Tuan et al. [143] utilized an autoencoder (a type of neural network
used for unsupervised learning) to determine, from these images, regions of interest
in the brain, and then fed these findings to a SVM classifier, achieving accuracies of
around 90% in distinguishing AD patients from Healthy Controls (HC)s. An interesting
approach, in line with the vision of this project, is to explore multiple algorithms before
deciding on a final model. Peng et al. [144], explored 4 different classifiers, SVM,
Naïve Bayes, RF, and KNN, before landing on a final SVM model which achieved an
AUC of 0.865, as well as a sensitivity and specificity of over 80%. On a similar note,
the paper by R. S. Nancy Noella & J. Priyadarshini [145] analysed the behaviour
of multiple classifiers such as Bagged Ensemble, DTs, Naïve Bayes and Multiclass
SVM. The final Bagged Ensemble model was trained on over 700 PET images and
distinguished between AD brains, Parkinson’s patient brains and healthy brains with
an accuracy of 90.3%. As a last additional example, one paper by Kumari et al. [7]
combined different types of data sources, including MRI, PET images and cognitive
assessments of patients, resulting in a high dimension dataset of 100 patients. This data
collection was used to develop a new RF-based classifier, which yielded remarkable
accuracies in distinguishing controls from AD patients (100% accuracy), controls from
MCI patients (91% accuracy) and AD from MCI patients (95% accuracy). Again these
findings, reveal great potential for more accurate and standardized diagnostics in AD,
by means of ML models constructed on imaging data.

Nonetheless, while it is clear that using MRI and PET data is an interesting and
widely adopted approach with promising results, these techniques are often costly,
time-consuming and not easily accessible to everyone. Therefore, it is important to
explore alternative methods that might be more affordable and accessible, while at the
same time allowing for further insights into this disease.
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4.2 Alternative Data Approaches

An alternative approach to imagery data involves utilizing demographic and psycho-
logical assessments as data, as demonstrated in the paper by J. Neelaveni & M. G.
Devasana [146]. This paper uses factors such as age, number of clinical visits, Mini-
Mental State Examination (MMSE) score and level of education to build a SVM classifier,
able to distinguish between AD patients and HC with 85% accuracy. The research
conducted by Antor et al. [147] also utilizes such metrics as well as brain measures to
construct several models: logistic regression, DTs, RF and SVM. The SVM classifier
ultimately achieved 92% accuracy and F1 score in predicting AD. An additional study
conducted this year by Wang et al. [148], created a RF model from sociodemographic
data as well (age, sex, marital status), and lipoprotein and metabolite variables. This
model achieved an accuracy of 71.01%, a sensitivity of 79.59% and a specificity of
65.28%, which despite not being particularly high performance metrics, permitted the
establishment and investigation of the association between certain proteins and metabo-
lites and the onset of AD. These papers illustrate an important trend in AD research:
the integration of multi-domain datasets in an attempt to enhance predictive accuracy.
A different but growingly popular technique is to make use of genetic data. One team
of investigators led by Alatrany in 2021 [149] developed a stacked ML model, more
specifically based on single nucleotide polymorphisms of AD patients and controls.
This model distinguished between the two groups with 93.7% accuracy, underscoring
the potential of genetic profiling in early AD detection. More recently, a team led by Gao
X. R. [150] using the UK Biobank dataset, considered genetic and non-genetic factors
(such as codes from electronic health records of the biobank participants), to design
a XGBoost model with an AUC for AD of 0.88. Furthermore, the researchers utilized
SHAP to explain this model, which allowed them to identify important predictors for
the development of AD, as, for example, records of urinary tract infection, syncope
and collapse or chest pain. An additional study published in the same year, also made
use of explainable AI, again using SHAP, to predict AD [151]. This study included
information about the participant’s sociodemographics, levels of self-reported health
as well as blood biomarkers. This latter portion of data significantly increased the
model’s performance with logistic regression achieving the highest AUC value of 0.818.
The researchers were able to identify levels of ptau protein, plasma neurofilament
light, blood tau protein, taurine, inosine, xanthine and L-Glutamine as key predictors
of AD, along with age, education level and marital status, regarding demographic
factors. Again this study encompasses several domains of data in order to create a
more comprehensive model of the disease. But a critical shared factor between these
latter 2 papers is the introduction of interpretable AI through SHAP, which not only
improves model transparency, but on top of that, aids in identifying key predictors,
crucial for clinical applicability and for our understanding of the disease.
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4.2.1 Protein and Blood/Serum Biomarkers

Bringing to focus a promising approach, closely aligned with the one taken in this
thesis, several studies have explored the use of protein and blood/serum biomarkers
for predicting AD. While the previous subsection highlighted various alternative
approaches for the modelling of this disease, including psychological assessments, so-
ciodemographic factors, andgenetic data, the current focus on protein andblood/serum
biomarkers represents a more direct investigation into the biological pathways of the
disease, as these provide measurable insights into the physiological changes associ-
ated with Alzheimer’s. This shift emphasizes the importance of biological markers in
enhancing diagnostic accuracy and early disease detection and and it leads to studies
that are more directly related to our hypothesis and methodology.

One research effort by Gaetani et al. [9] aimed to find protein biomarkers that
indicate neuroinflammation in AD. To this end, they analyzed CSF samples from
patients with mild cognitive impairment due to AD (AD-MCI) and compared them
to samples from patients with other neurological diseases. The team subsequently
built a penalized logistic regression model which yielded an AUC of 0.906. This led
to the identification of 4 proteins, all linked to neuroinflammatory processes (SIRT2,
HGF, MMP-10, and CXCL5) as effective markers, displaying higher levels in AD-
MCI patients. Similarly, Khononikhin et al. [152] analysed mass spectrometry data
from plasma samples of patients with AD, MCI, vascular dementia, frontotemporal
dementia, and an elderly control group. The study highlighted significant decreases
in specific proteins associated with AD. ML algorithms were then applied to identify
important protein panels and build classifiers for predicting AD. The best classifiers
achieved 80% accuracy, 79.4% sensitivity, and 83.6% specificity, in predicting the risk
of developing AD within three years for patients with MCI. Proteins found to be
candidate biomarkers included afamin, APOE, APOA4, fibronectin, vitronectin, FGG,
FGA and beta-2-glycoprotein. One other study by Araujo et al. [10] that envisioned
finding a panel of plasma proteins to predict MCI progression to AD, focused on a
high-throughput modelling approach. The researchers created over one billion models
by exploring different interactions among 146 plasma proteins and randomly selecting
up to 30 proteins for each, before choosing the best-performing one. From this, they
developed a ML-based panel composed of 12 plasma proteins (ApoB, Calcitonin, C-
peptide, CRP, IGFBP-2, Interleukin-3, Interleukin-8, PARC, Serotransferrin, THP, TLSP
1-309, and TN-C). The best model yielded an AUC of 0.91 and accuracy of 91% for
predicting the risk of MCI patients converting to AD dementia in a horizon of up
to four years. Interestingly, a study aiming to predict conversion from MCI to AD
based on protein data had already been conducted in 2011 [153]. However, these
investigators combined plasma cytokine and chemokine levels with MRI data and
compared these to measures of APOE genotype and clinical evaluation to assess which
best predict progression. The study found biochemical markers of inflammation to
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be better predictors of conversion than APOE genotype or clinical measures, with the
combination of serum inflammation markers and MRI imaging providing the best
predictor of conversion. The SVM model created had an AUC of 0.78 and was built
with several cytokines including: BDNF , TNF-𝛼, IL-6, IL-1𝛽, IL-1RA, IL-10, IL-12, IL-2,
IL-8, VEGF, IFN-𝛾, IL-4, IL-17, GM-CSF, G-CSF, and MCP-1. Closely related is another
study from 2007 by Ray et al. [8], that found 18 blood plasma signalling proteins to be
strong predictors of AD. Namely, these included G-CSF, IL-1𝛼, IL-3, IL-11 and TNF-𝛼,
which were used to build a classifier that distinguished with 90% accuracy patients
with MCI that progressed to AD within 2 to 6 years. One more recent study by Galgani
et al. [154], aimed to understand the role of neuroinflammation in AD by examining
blood circulating cytokines as well as analysing the effects of age, sex, and the APOE
genotype on these biomarkers. Their dataset comprised a cohort of cognitively healthy
individuals, patients with MCI, and patients with AD-like dementia. Their findings
revealed a robust sex effect on IL-12 and an APOE-related difference in IL-10, with the
latter being also related to the presence of advanced cognitive decline. Overall, IL-1𝛽
was the most strongly associated variable with the progression from MCI to dementia
and the researchers concluded by highlighting the role of plasma cytokines as useful
non-invasive tools for studying neuroinflammation in AD. Lastly, a 2019 research article
used serum cytokine data to predict several marks of, not Alzheimer’s but Parkinson’s
disease, another age-related neurodegenerative disorder [155]. In fact, cytokine levels
have been used to build predictive models for several conditions, namely coronary
artery disease [156], lung cancer [157], multiple sclerosis [158], and even COVID-19
[159].

All this literature is summarized in Table 4.1 and collectively gives emphasis to the
significant potential of protein and blood/serum biomarkers in improving the early
diagnosis and prediction of AD, providing additional support to the approach taken
in this thesis.

Table 4.1: Summary of ML studies on blood biomarkers related to AD.

Authors Year Reported Blood Biomarkers Results

Gaetani et al. 2021 SIRT2, HGF, MMP-10, CXCL5 AUC: 0.906

Khononikhin et al. 2022 Afamin, APOE, APOA4, Fibronectin,
Vitronectin, FGG, FGA, 𝛽2-Glycoprotein Accuracy: 80%

Araujo et al. 2022 ApoB, Calcitonin, C-peptide, CRP, IGFBP-2,
IL-3, IL-8, PARC, Serotransferrin, THP AUC: 0.91, Accuracy: 91%

Furney et al. 2011 Serum cytokines (various, including BDNF,
TNF-𝛼, IL-6, etc.) AUC: 0.78

Ray et al. 2007 G-CSF, IL-1𝛼, IL-3, IL-11, TNF-𝛼 Accuracy: 90%
Galgani et al. 2022 IL-12, IL-10, IL-1𝛽 Accuracy: 65%

4.2.2 Infectious Data Approaches

Despite the strong hypothesis, previously explored in chapter 2, that pathogens which
cause neuroinflammation may lead to the development of AD [160], there is not an
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extensive body of research focusing on using infectious data in order to predict AD
through ML, which makes our approach rather novel. However, a 2024 study by Tejeda
M. et al. [161] used presence and quantification of viral DNA to build several types
of predictive ML modes for AD (from the more simple generalized linear models to
ensemble methods). The best model found was logistic Lasso regression with 67.2%
predictive accuracy for AD status in the test set. The researchers also found HSV-1
and HPV to be the strongest predictors. Another very recent research project aimed
to study the hypothesis that herpes virus infection increases the risk of AD, using
ML [162]. For this purpose, the investigators developed a RF model to identify 22
key regulatory genes, associated with the occurrence and development of AD and
which are genetically regulated by herpes virus infection. These findings highlight
the novelty and significance of adding pathogen-related factors into ML models for
AD prediction, as well as open the door to a new strategy which could offer novel
therapeutic approaches and diagnostic instruments that focus on the inflammatory
and infectious aspects of AD.

4.3 Studies on Predicting Cytokine Levels

Lastly, to further explore relationships between pathogens and cytokines, and the
pivotal role these proteins play in the neuroinflammatory processes associated with
AD, in this project we have also attempted to predict cytokine levels. Therefore, while
this type of research is still in its early stages, it is relevant to analyse what has been
done in this emerging area.

Starting with TNF-𝛼, the research conducted has mainly been on the field of TNF-𝛼
inhibition response, as TNF-𝛼 inhibitors are important drugs in treating patients with
certain autoimmune diseases [163]. A team of researchers led by Prabha [164] have
developed a ML model, TNFipred, for classifying TNF-𝛼 inhibitors. For this purpose,
they explored Naïve Bayes, RF, KNN, and SVM models. The best-performing model
was RF, achieving an accuracy of 87.96% and a sensitivity of 86.17%. This study
represents the first ML model specifically designed for TNF-𝛼 inhibitor prediction.
Additionally, several studies have focused on using ML models to predict non-response
to anti-TNF treatment, specifically on the case of rheumatoid arthritis [165–167]. Lastly,
while there seems to be a lack of papers that directly predict TNF-𝛼 levels, one study
has aimed at developing models for predicting TNF-𝛼 inducing peptides [168], as
enhanced expression of this cytokine is associated with the progression of several
diseases. Their model achieved an AUROC of 0.83 and interestingly, the researchers
also identified potential TNF-𝛼 inducing peptides in different proteins of HIV-1, HIV-2
and SARS-CoV-2.

Considering Interleukin-6, again ongoing research seems to be directed towards
the prediction of IL-6 inducing peptides and not direct levels of IL-6 in patients [169,
170]. For IL-10 this is also the case, with computational approaches being undertaken
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for predicting IL-10 inducing peptides [171]. Even so, one study utilized quantitative
morphology data from macrophages to predict these cells’ content of IL-10, achieving
a 95% accuracy in this task via a RF model [172]. As for IL-1RA and IL-1𝛽, it appears
that these cytokines have so far only been utilized as features rather than targets in ML
studies, which constitutes an innovative part of our study.

From looking at the current available research, one can visualize the efforts of the
scientific community in studying the debilitating disease that is Alzheimer’s, from
describing its intricate pathways and mechanisms to finding better and more accessible
diagnosis techniques. Furthermore, it is a paramount example of the need to integrate
technological advances and our novel intelligent tools with medical research, with ML
emerging as a powerful new ally and achieving outcomes that traditional techniques
could not easily achieve.
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5

Methodology

This chapter describes the methodology used in this project. Section 5.1 briefly de-
scribes the data collection process, Section 5.2 defines the general in silico experimental
approach, and Sections 5.3 and 5.4 expand upon the specifics of the experimental
procedures and respective settings.

5.1 Data collection

The data used in this study was collected and provided by the Experimental Neuro-
psychobiology Laboratory, Clinical and Behavioural Neurology Unit at IRCCS Fon-
dazione Santa Lucia. The dataset, which includes data for 51 healthy subjects and
48 AD patients, is composed of 3 main domains: Infectious Burden (IB) data (with
measures of antibodies for HSV-1/2, Helicobacter pylori, CMV, Chlamydia pneumoniae
and Borrelia burgdorferi), Trained Immunity (TI) data (composed of measures for differ-
ent cytokines under different stimulation conditions) and serum data (levels of serum
circulating cytokines). It also includes information on patients’ sex and age. The
cytokines included in this study are described in Table 5.1.

TI data was collected according to the protocol by Domínguez-Andrés et al[173]. In
this way, TI was inducted in vitro in adherent monocytes obtained from the blood of
AD patients and control subjects. This process is described in Figure 5.1. After isolation
(step 1 in Figure 5.1), these cells were subjected to a trained immunity-inducing stimulus,
namely incubation with LPS (a molecule of bacterial origin), these cells are referred to
as Primed with LPS molecule (Pr LPS), or incubation with the yeast Candida albicans,
these are referred to as Primed with Candida albicans pathogen (Pr Ca), as seen in step
2 of Figure 5.1. Some cells, identified as Non Treated (NT), were not subjected to any
stimulus, serving as controls. After approximately one week, a portion of the cells was
rechallenged with one of the previously mentioned stimuli (step 3 of Figure 5.1). Cells
that had been primed with LPS and were challenged with LPS are termed as LPS LPS,
whereas the ones that were primed with C. albicans and then challenged with LPS are
referred to as Ca LPS. Lastly, cytokine levels found in the supernatant of the cellular
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suspensions were assessed by ELISA (step 4 of Figure 5.1).

Figure 5.1: Illustration of experimental procedure for trained immunity data collection.
Reprinted from [173].

Table 5.1: Cytokines included in the dataset, grouped by function.

Function Cytokine Complete Name

Pro-inflammatory

TNF𝛼 Tumor necrosis factor-alpha
IFN𝛾 Interferon gamma
G-CSF Granulocyte Colony-Stimulating Factor
IL-1𝛽 Interleukin-1beta
IL-6 Interleukin-6
IL-8 Interleukin-8

IL-17 A Interleukin-17 A
IL-18 Interleukin-18
IL-23 Interleukin-23

Regulatory

CX3CL1 Fractalkine
GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor
MCP-1 Monocyte Chemoattractant Protein-1

VEGF-A Vascular Endothelial Growth Factor
IL-2 Interleukin-2
IL-4 Interleukin-4

IL-12p70 Interleukin-12
Regulatory/

Anti-inflammatory
IL-1RA Interleukin-1 Receptor Antagonist
IL-33 Interleukin-33

Anti-inflammatory IL-10 Interleukin-10
BDNF Brain-Derived Neurotrophic Factor

For the assessment of IB, an ELISA diagnostic test was employed on serum samples
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from individuals. The recorded values represent absorbance measurements that are
directly proportional to the levels of specific Immunoglobulin G (IgG) antibodies for
the respective pathogen. Values under 0.8 are considered negative for past infection
with that microbe, positive values are equal or greater than 1.1 and values in between
these thresholds are considered borderline cases.

Serum cytokine levels were also obtained via ELISA on serum samples of the
subjects.

5.2 General Approach

The present project was divided in 3 main ML tasks: Predicting Cytokine Levels -
Regression (described in Section 5.3.1), Predicting Cytokine Levels - Classification
(found in Section 5.3.2) and Predicting Alzheimer’s Disease - Binary Classification
(Section 5.3.3). Additionally, for comparison, age group (being over or under the age of
65) was also predicted based on TI data (Section 5.3.4).

All this multifaceted analysis sought to explore the issue from all angles while still
relying on the same core methodology, which can be visualized in Figure 5.2.

Firstly, the data underwent cleaning and preprocessing (including data scaling)
before analysis. As will be explained later on in Section 5.3.3, when dataset size allowed
it, a test set was set aside. Subsequently, a nested Cross-validation (CV) grid-search was
implemented to identify the optimal hyperparameters for each given algorithm, and
provide a general assessment of model performance, guiding the decision to proceed
to the test set evaluation and construction of final models. Details on hyperparameters
explored for the regressors and classifiers deployed are provided in Sections 5.4.1 and
5.4.2, respectively. Section 5.4.3 provides the specifics of the implementation of the
nested CV strategy. The algorithms explored for both regression and classification
are presented in Table 5.2. All the models were implemented using the scikit-learn
library[174].

In scenarios where the dataset size permitted the division of a separate test set,
models were constructed using the entire dataset utilized in the nested CV procedure
with the optimizedhyperparameters. These models were then evaluatedon the separate
test set, with respective performance metrics recorded and plotted for visualization.
Furthermore, the best models were interpreted using SHAP.

Additionally, to address class imbalance issues, an attempt was made to oversample
the training data in every instance it was used (both in the nested CV procedure and
training of final models). For regression tasks, the SMOGN technique was employed,
while for classification tasks, the SMOTE method was utilized, (details for these al-
gorithms can be found in Section 5.4.4). To enable comparative analysis, results for
models trained with and without oversampling were separately documented.
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Table 5.2: Table of the algorithms deployed for both regression and classification.

Regression
Algorithms

Classification
Algorithms

Linear Regression Logistic Regression
Lasso Regression Logistic Lasso Regression
Ridge Regression Logistic Ridge Regression
Elastic-Net (EN) Regression Logistic Elastic-Net (EN) Regression

Decision Trees (DT)
Random Forest (RF)

Support Vector Machine (SVM)
K-Nearest Neighbors (KNN)

Extreme Gradient Boost (XGB)

Figure 5.2: Schematic overview of methodology pipeline.

5.3 Experimental Procedures

5.3.1 Predicting TI Cytokine Levels - Regression

The task of predicting TI cytokines consisted of multiple targets, effectively representing
several independent tasks. However, all tasks shared the same set of features. Training
data consisted of IB data (antibody levels for HSV, CMV, H. pylory, B. burgdorferi and C.
pneumoniae), sex, age and whether subjects had Alzheimer’s disease. Target variables
were TNF𝛼, IL-6, IL-10, IL-1𝛽 and IL-1RA in each of the 5 considered stimulation
conditions: NT, Pr LPS, Pr Ca, Primed with LPS and then challenged with LPS (LPS
LPS) and Primed with C. albicans and then challenged with LPS (Ca LPS), with the
exception of IL-1𝛽 where there was no data available for the challenge conditions, as
displayed on Table 5.3.
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Table 5.3: Table of targets for regression task.

Cytokine Condition Dataset size Oversampling
possible

Samples added
by SMOGN

NT 32 yes 18
Pr LPS 26 yes 16
Pr Ca 27 no -
Ca LPS 16 no -

TNF𝛼

LPS LPS 34 yes 17
NT 28 yes 14
Pr LPS 19 yes 9
Pr Ca 27 no -
Ca LPS 13 no -

IL-6

LPS LPS 29 yes 16
NT 22 yes 14
Pr LPS 16 no -
Pr Ca 22 yes 14
Ca LPS 16 yes 12

IL-10

LPS LPS 20 no -
NT 32 yes 19
Pr LPS 32 yes 22IL-1𝛽
Pr Ca 32 yes 19
NT 29 no -
Pr LPS 29 no -
Pr Ca 29 no -
Ca LPS 17 no -

IL-1RA

LPS LPS 20 no -

Data preprocessing involved identifying the desired target column and eliminating
rows where the label was missing, resulting in variations in dataset size for each target,
as shown on Table 5.3. Data was scaled using MinMax Scaler.

Following this, hyperparameter optimization via nested Leave-one-out Cross Val-
idation (LOOCV) for each of the algorithms mentioned in the regression column of
Table 5.2 was executed and performance assessed. Hyperparameters grid-searched
and details for CV are presented in Sections 5.4.1 and 5.4.3, respectively. During this
procedure, oversampling of the training data was attempted by means of the SMOGN
algorithm. As shown on Table 5.3, this algorithm was not able to perform oversampling
on all cases, for some target variables’ distribution did not contain box plot extremes
which the algorithm requires in order to oversample the data.

Finally, the actual and predicted values for the validation instance in each outer
fold of the nested CV were stored, allowing, at the end of each execution, for the
computation of the MdAE, the MAE, the absolute error’s standard deviation and the
Pearson’s Correlation Coefficient between real and output values. Visualizations with
this gathered data were built, namely the actual vs. predicted scatter plot and the
distribution of residuals.
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5.3.2 Predicting Cytokine Levels - Multi-Class Classification

The previously described ML problem was converted to a multi-class classification task,
in an attempt to simplify the problem, increase robustness to outliers as well as achieve
meaningful insights into the model’s performance by means of different metrics (such
as accuracy and F1 score).

For the purpose of this conversion, the tertiles approach was deployed, based on
the distribution of all considered protein values combined. The continuous protein
levels were divided into three categories based on their distribution: Low (first tertile,
values in the bottom 33%), Medium (second tertile, values between 34% and 66%), and
High (third tertile, values in the top 33%). The final distribution of values for each
target is represented on Figure 5.3.

Figure 5.3: Distribution of discrete trained immunity protein values.

As can be seen in Figure 5.3, not all TI proteins considered in regression exhibited
a distribution encompassing all three classes, which led to the exclusion of certain
targets. A lack of sufficient samples in each class—specifically, having fewer than three
instances per class— means that the model cannot reliably learn the characteristics
of those classes due to insufficient representative data. This situation increases the
risk of overfitting, renders the performance metrics unreliable, and results in such
significant class imbalance that there aren’t enough instances of the minority class to
enable effective oversampling. Accordingly, TNF𝛼 NT, TNF𝛼 Pr Ca and IL-6 Pr Ca
had to be disregarded as targets due to only presenting "Low" values. IL-6 NT, IL-10
NT and IL-10 Pr Ca were also disregarded for not presenting any instances of class
"High" and presenting less than 3 instances of class "Medium". Lastly, TNF𝛼 Ca LPS
presented only 2 "Low" instances, and IL-10 Ca LPS and IL-𝛽 Pr Ca presented less than
3 instances for class "High", thus these variables were also not accounted for.

After establishing the possible targets for this task, an approach very similar to
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the one described in Section 5.3.1 was followed. Features considered were once more
antibody levels for HSV, CMV, H. pylory, B. burgdorferi and C. pneumoniae, sex, age
and whether subjects had AD. Data was cleaned according to specific target column,
rows where the label was missing were eliminated and data was scaled. For every
method listed in the classification column of Table 5.2, hyperparameter optimization
using nested LOOCV was carried out, and performance was evaluated. Grid-searched
hyperparameters and CV details are provided in Sections 5.4.2 and 5.4.3, accordingly.

Once again, the predicted and actual values for the validation instance in each outer
fold of the nested CV were saved, enabling the computation of the general accuracy,
precision, recall and F1 score at the conclusion of each execution. With the use of this
data, the confusion matrix for each method and each target variable was plotted to
facilitate analysis of model performance.

5.3.3 Predicting Alzheimer’s Disease - Binary Classification

Predicting AD was a central task to this thesis. Due to differences in objectives and
variations in dataset size and available features in line with those objectives, the task
of predicting AD was divided into 4 different subtasks. Methodology for predicting
AD from infectious burden data is explored in Section 5.3.3.1, prediction from trained
immunity data in Section 5.3.3.2, prediction from both IB and TI data simultaneously
is presented in Section 5.3.3.3 and, lastly, Section 5.3.3.4 refers to modelling AD from
serum cytokine data. Main differences between these subtasks can be consulted on
Table 5.4, from dataset size, separation of an independent test set and its number of
samples, existence of missing data and nested CV outer fold strategy. In all these tasks
age was discarded as a feature due to high correlation with AD.

Table 5.4: Summary of major differences between subtasks of predicting AD.

Predict AD Total sample
size

independent
test set

test set
size

Nones
in data

CV
outer fold

From IB 35 no - no Leave-one-out (LOO)
From TI 38 yes 8 yes LOO
From IB + TI 38 yes 8 yes LOO
From serum 99 yes 20 yes 8 fold

5.3.3.1 Predicting AD from Infectious Burden Data

Firstly, with the intuition of exploring the infection hypothesis and thus the possibility
of leveraging IB data in order to predict AD, antibody levels for HSV, CMV, H. pylory, B.
burgdorferi and C. pneumoniae were selected as features, along with sex of the subjects.

This selection resulted in a dataset composed of 35 instances (15 HCs and 20 AD
patients). Owing to this small sample size, it was not viable to separate an independent
test set, thus, only LOOCV results are available. There was no missing data in the
training set, so data needed only to be scaled, which was executed using MinMax scaler.
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SMOTE algorithm was deployed for oversampling, creating 5 additional artificial
samples for HCs. Nested LOOCV was performed for each technique indicated in the
classification column of Table 5.2, for hyperparameter optimization and performance
assessment. General accuracy, precision, recall and F1 score, based on the validation
fold of this procedure was computed, as well as the confusion matrix for each ML
model.

5.3.3.2 Predicting AD from Trained Immunity Data

This predictive modelling task had the objective of exploring relationships between AD
and selected TI proteins. Features selected were the ones used as targets for predicting
cytokine levels, expressly, TNF𝛼, IL-6, IL-10, IL-1𝛽 and IL-1RA in different stimulation
conditions (as present on Table 5.3). However, IL-6 in conditions Ca LPS was dropped
because of the high proportion of missing values (over 50%). Subjects’ sex was also
included.

This dataset comprised 38 instances (18 HCs and 20 AD patients). A small test set
of 8 samples (4 HCs and 4 ADs) was set aside for the settlement of final models. Data
was scaled and missing data entries were filled with mean, median or mode of column
(independent results for these 3 strategies were assessed). Training data (composed
of 16 patients and 14 controls) was oversampled using SMOTE, creating 2 additional
artificial controls (details for SMOTE found in Section 5.4.4).

Nested LOOCV was performed, information on optimal hyperparameters and per-
formance was stored. For building the final models, the classification algorithms were
trained on the 30 samples used in the nested procedure with the optimal hyperparame-
ters found. These were chosen based on most frequent combination of hyperparameters
yielded via LOOCV. In cases where 2 or more combinations were found with the same
frequency, a random one of them was chosen (seed was set to 12 for reproducibility).

At last, model’s performance was assessed using the test set. This evaluation
included metrics such as overall accuracy, precision, recall, and F1 score, as well as
these metrics specific to AD. Additionally, the evaluation involved calculating the AUC,
plotting the test set’s confusion matrix, and generating the ROC curve. Best models
were interpreted using SHAP kernel explainer, specifically via importance bar and
beeswarm summary plots.

5.3.3.3 Predicting AD from Infectious Burden and Trained Immunity Data

This task, aiming to explore relationships between both infection and TI cytokines with
Alzheimer’s, combined features from infectious burden and trained immunity. The
resulting features included: sex, antibody levels for HSV, CMV, H. pylory, B. burgdorferi
and C. pneumoniae, TNF𝛼, IL-10, and IL-1RA under all five considered stimulation
conditions, IL-6 under NT, Pr LPS, Pr Ca, and LPS LPS conditions, and IL-1𝛽 under
NT, Pr LPS, and Pr Ca conditions.
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Notwithstanding, the methodology for this task is nearly identical to the previously
described approach. The dataset consisted of 38 samples, with 8 samples allocated
to the test set and the remaining 30 used for hyperparameter optimization and final
model training. Missing data was filled with mean, median or mode. Oversampling
via SMOTE led to the addition of 2 artificial controls. Final models created with optimal
hyperparameters were interpreted using SHAP.

5.3.3.4 Predicting AD from Serum Cytokine Levels

Lastly, on the topic of constructing models to predict AD, serum cytokine levels made
up a substantially larger dataset. These serum records, were obtained for 99 patients (51
HCs and 48 AD patients) and included levels for each cytokine described in Table 5.1.

Accordingly, we utilized these serum cytokine levels as features for building predic-
tive models, along with the sex of the patients. The larger size of this dataset, allowed
for the allocation of a test set comprised of 10 patients and 10 controls. IL-4, IL-33, IL-23,
Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), IL-2, and IL-12p70
were excluded from the dataset due to a high proportion of missing values (>50%). The
training set with the remaining features was then preprocessed by imputing missing
values with the mean, median, or mode, and subsequently scaled. To keep in line with
the chosen approach, an attempt to oversample the data via SMOTE was still deployed,
however resulting in the addition of just 3 artificial patients to the dataset.

Initial performance was estimated and hyperparameters optimized for each of the
classifiers via nested CV. However, due to the larger dataset size, LOO strategy was not
deployed, instead a 20-fold CV composed the outer layer as specified in Section 5.4.3.
This resulted in more robust results for the validation layer, which led to a mildly
different strategy for the choice of optimal hyperparameters. These were once again
primarily chosen by most frequent combination of hyperparameters found, however
when ties arose, the combination which yielded the highest AUC was selected.

Afterwards, final models were set up and performance evaluated on test set (by
means of train and test accuracies, precision, recall and F1 score, general and specific
to AD, and AUC). Confusion matrices and ROC curves were plotted for each model.
The SHAP kernel explainer was utilized to interpret the best models, through the use
of importance bar and beeswarm summary charts.

5.3.4 Predicting Age (Over/Under 65) for Comparison

One concluding task was to attempt to predict whether subjects were over the age of
65 from TI data, for comparison with the task of predicting AD from TI as well.

For this purpose, target variable age was binarized (1 for subjects over 65 and 0
otherwise). Features considered were: sex (since this was also included in prediction
of AD), and the monocyte expressed cytokines in different stimulation conditions
described in Sections 5.3.3.2 and 5.3.3.3. Thus, the dataset resulted again in 38 samples,
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with 8 being separated for the constitution of the test set. In this case, due to a larger
proportion of elderly individuals in the data, a stratified train test split was utilized,
and the test set was composed of 5 subjects over 65 and 3 under this threshold. The
train set consisted in 19 samples belonging to the elder group and 11 of the alternative
class.

The approach used is as previously described, with the filling of missing data by
means of median, mean or mode, hyperparameter optimization via nested LOOCV
and final models being set up and evaluated on test set. SMOTE was deployed for
oversampling, in this case creating 8 artificial samples (labelled under 65). Final models
with ideal hyperparameters were interpreted via SHAP.

With the experimental setups for each task having been outlined, and to provide a
clearer overview of the data characteristics and treatments used, a summary table is
presented below (Table 5.5). This table encapsulates key information regarding dataset
sizes, excluded instances, data treatment strategies, and oversampling techniques across
all tasks.

Table 5.5: Overview of dataset characteristics and treatment for each task.

Task Dataset
Size

Number of excluded
training instances

Data
Treatment

Oversampling
Technique

Predicting TI cytokine
levels- regression

Varying from 13 to 34
- see Table 5.3 0 Cleaning and

normalization SMOTE

Praedicting TI cytokine
levels- classification

Varying from 13 to 34
- see Figure 5.3 0 Cleaning and

normalization SMOGN

Predict AD from IB 35 0 Cleaning and
normalization SMOTE

Predict AD from TI 38 8 - for test set
Cleaning,
normalization,
imputation of nones

SMOTE

Predict AD from IB
and TI 38 8 - for test set

Cleaning,
normalization,
imputation of nones

SMOTE

Predict AD from serum 99 20 - for test set
Cleaning,
normalization,
imputation of nones

SMOTE

Predict age group
from TI 38 8 - for test set

Cleaning,
normalization,
imputation of nones

SMOTE

5.4 Experimental Settings

This section describes with more detail the experimental settings adopted. Specifically,
Subsections 5.4.1 and 5.4.2 entail the hyperparameter grids for each algorithm used
in this project. Subsection 5.4.3 elaborates on CV specifics and lastly, Subsection 5.4.4
defines oversampling settings.

5.4.1 Hyperparameters for Each Regressor

On the topic of model hyperparameters, we aimed for a comprehensive Grid Search
(GS), striving for thoroughness while balancing the necessity to control computational
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time effectively.
The hyperparameters searched for in each of the regression algorithms are present

in Table 5.6. For basic linear regression, only 1 hyperparameter was optimizable
which was whether to calculate the intercept for this model. For Ridge, Lasso and EN
regressions, similar and comprehensive grids were searched, with alpha (a common
parameter among them) being tested across values ranging from 1 × 10−5 to 100,
spanning several orders of magnitude. The chosen range aims to explore a broad
spectrum of regularization strengths, ensuring performance of the models is evaluated
across very weak to very strong regularization, thereby increasing the likelihood of
finding the optimal alpha value for each model. As for EN, an additional parameter
was tuneable, the L1 ratio, that is the balance between both penalties. As l1_ratio =
0 equals applying an L2 penalty and l1_ratio = 1 signifies an L1 penalty, the selected
range allows for a thorough exploration in order to identify the optimal combination
of L1 and L2 regularization.

In the case of DTs and RFs, the searching criteria was to ensure a comprehensive
search over key parameters, while minimizing computational time. Thus, variations in
tree depth, splitting criteria, and minimum samples for splits and leaves were included,
concerning finding a balance between underfitting and overfitting. Values covered in
these intervals were rather small, adapted to our small size dataset. For RF, number of
estimators was optimized between 50, 100 and 200, striking a balance between ensemble
stability and computational efficiency.

Regarding SVR, all kernels were considered, permitting the exploration of different
relationships in the data. C parameter (which controls regularization strength) and
epsilon (which determines the margin of tolerance within which no penalty is given
to errors), were searched across small ranges that comprehended slight increases of
default values, allowing to adjust model flexibility.

Concerning KNN, many parameters were explored within all their possible values
(weight function, algorithm to compute nearest neighbors and power parameter).
Number of neighbors ranged from 3 to 7, balancing between having too few neighbors,
which might lead to overfitting and high variance, and too many neighbors (as 7 is rather
a high value for our number of available samples), which might lead to underfitting
and high bias.

Lastly, XGB’s grid was designed similarly to RF for number of estimators and
maximum depth (albeit including smaller values in this last interval, as this model
works with smaller trees by default). Gamma parameter tested varying regularization
strengths and the learning rate covered a broad spectrum of step sizes for updating
the model weights, with smaller values requiring more iterations but potentially im-
proving generalization. Here, (as with RF), the goal was to conduct GS over critical
hyperparameters within the limited computing time limitations, being cautious not to
overextend the search.

The range of values for all hyperparameters always included default values, as these
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are a reasonable starting point and have been found as the optimal value in a number
of tasks [108]. Therefore, including them ensures a balanced and effective exploration
of model settings, leveraging well-known optimal combinations while looking for
possible enhancements. This is also true for hyperparameter grids for classifiers.

Table 5.6: Table for each regressor with detailed hyperparameter grids. Any hyperpa-
rameter not mentioned was left as default by scikit learn.

Model Hyperparameter Values searched Description
Linear Regression fit_intercept [True, False] Whether to calculate the intercept for the model.

alpha [0.00001, 0.0001, 0.001, 0.01,
0.01, 1, 10, 100] Constant that controls regularization strength.

fit_intercept [True, False] Whether to calculate the intercept for the model.Lasso Regression
selection [cyclic, random] Controls wheter coefficients are updated

sequentially or at random.

alpha [0.00001, 0.0001, 0.001, 0.01,
0.01, 1, 10, 100] Constant that controls regularization strength.

fit_intercept [True, False] Whether to calculate the intercept for the model.Ridge Regression
solver [auto, svd, cholesky, lsgr,

sparse_cg, sag, saga] Algorithm to optimize loss function.

alpha [0.00001, 0.0001, 0.001, 0.01,
0.01, 1, 10, 100] Constant that controls regularization strength.

l1_ratio [0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0] Balance between L1 and L2 regularization.

fit_intercept [True, False] Whether to calculate the intercept for the model.Elastic-Net
Regression

selection [cyclic, random] Controls whether coefficients are updated
sequentially or at random.

criterion [squarred_error, friedman_mse] Function to measure the quality of a split.
max_depth [None, 5, 10, 15] The maximum depth of a tree.

min_samples_split [2, 5, 10] The minimum number of samples required
to split an internal node.

min_samples_leaf [1, 2, 4] The minimum number of samples required
to be at a leaf node.Decision Trees

max_features [None, sqrt, log2] The number of features to consider when
looking for best split.

n_estimators [50, 100, 200] The number of trees in the forest.
max_depth [None, 10, 20, 30] The maximum depth of the trees.

min_samples_split [2, 5, 10] The minimum number of samples required
to split an internal node.Random Forest

min_samples_leaf [1, 2, 4] The minimum number of samples required
to be at a leaf node.

kernel [linear, rbf, poly, sigmoid] The kernel type to be used in the algorithm.

C [1, 10, 100] Strength of regularization
(inversely proportional to C).Support Vector

Regressor epsilon [0.1, 0.2, 0.5] Defines the margin within which no penalty
is given to prediction errors.

n_neighbors [3, 4, 5, 6, 7] Number of neighbors to use.

weights [uniform, distance] Weight function to be used (distribute weights
uniformly, or by inverse of distance)

algorithm [ball_tree, kd_tree, brute] Algorithm to compute nearest neighbors.K-Nearest Neighbors

p [1, 2] Power parameter (1 uses Manhattan distance,
2 uses Euclidian distance)

n_estimators [100, 200, 500] Number of gradient boosted trees.
max_depth [3, 6, 9] The maximum depth of a tree.

gamma [0.01, 0.1] Minimum loss reduction needed to split a
leaf node in a tree.Extreme Gradient

Boost
learning_rate [0.001, 0.01, 0.1, 1] Step size shrinkage used in update to prevent

overfitting.

5.4.2 Hyperparameters for Each Classifier

The hyperparameters searched for each classifier can be consulted on Table 5.7.
The strategy for basic logistic regression and logistic regression with L1, L2 and

elastic-net penalties was in every way identical to the one described previously in
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Section 5.4.1 for the linear regressors, with the solvers chosen for each of the algorithms
being in accordance with the penalty applied.

Hyperparameter grids for DTs and RF are also the same as described formerly for
the regressors (with the criterion parameter for DT being adapted to classification).
The same is also true for the KNN algorithm. For Support Vector Classifier (SVC),
probability estimates were enabled and as computation time allowed for it, gamma
parameter (which certain kernels make use of) was also included in the search (between
the 2 possible built-in values: auto or scale). Finally, due to computational efficiency
on our high-dimensional datasets in several classification tasks, a linear booster model
for XGB was implemented, a method which uses a linear model as the base learner (or
booster) [175]. In this way, the chosen hyperparameters to optimize were alpha and
lambda (corresponding to L1 and L2 regularization terms, respectively), the learning
rate as before and the choice of algorithm to fit the linear model (either shotgun or
ordinary coordinate descent algorithm).
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Table 5.7: Table for each classifier with detailed hyperparameter grids. Any hyperpa-
rameter not mentioned was left as default by scikit learn.

Model Hyperparameter Values searched Description
penalty None Specifies the norm of the penalty.

fit_intercept [True, False] Whether to calculate
the intercept for the model.Basic Logistic

Regression solver [newton-cg, lbfgs, sag, saga] Algorithm to optimize loss function.
penalty L1 Specifies the norm of the penalty.

fit_intercept [True, False] Whether to calculate
the intercept for the model.

C [0.001, 0.01, 1, 10, 100] Inverse of regularization strength.
Logistic Lasso
Regression

solver [liblinear, saga] Algorithm to optimize loss function.
penalty L2 Specifies the norm of the penalty.

fit_intercept [True, False] Whether to calculate
the intercept for the model.

C [0.001, 0.01, 1, 10, 100] Inverse of regularization strength.Logistic Ridge
Regression

solver [liblinear, newton-cg,
lbfgs, sag, saga] Algorithm to optimize loss function.

penalty elasticnet Specifies the norm of the penalty.

fit_intercept [True, False] Whether to calculate
the intercept for the model.

C [0.001, 0.01, 1, 10, 100] Inverse of regularization strength.

solver [liblinear, newton-cg,
lbfgs, sag, saga] Algorithm to optimize loss function.

Logistic Elastic-Net
Regression

l1_ratio [0.3, 0.4, 0.5, 0.6, 0.7] Balance between L1 and L2 regularization.
criterion [gini, entropy] Function to measure the quality of a split.
max_depth [None, 5, 10, 15] The maximum depth of a tree.

min_samples_split [2, 5, 10] The minimum number of samples
required to split an internal node.

min_samples_leaf [1, 2, 4] The minimum number of samples
required to be at a leaf node.Decision Trees

max_features [None, sqrt, log2] The number of features to consider
when looking for best split.

n_estimators [50, 100, 200] The number of trees in the forest.
max_depth [None, 10, 20, 30] The maximum depth of the trees.

min_samples_split [2, 5, 10] The minimum number of samples
required to split an internal node.Random Forest

min_samples_leaf [1, 2, 4] The minimum number of samples
required to be at a leaf node.

probability True Enables probability estimates.

C [0.1, 1, 10, 100] Strength of regularization
(inversely proportional to C).

kernel [linear, rbf, poly] The kernel type to be used in
the algorithm.

degree [2, 3] Degree for "poly" kernel.
Support Vector
Classifier

gamma [scale, auto] Defines how far the influence of a
single training instance reaches.

n_neighbors [3, 4, 5, 6, 7] Number of neighbors to use.

weights [uniform, distance]
Weight function to be used
(distribute weights uniformly, or
by inverse of distance).

algorithm [ball_tree,
kd_tree, brute] Algorithm to compute nearest neighbors.K-Nearest Neighbors

p [1, 2] Power parameter (1 uses Manhattan
distance,2 uses Euclidian distance)

alpha [0, 0.1, 1]
L1 regularization term on weights.
The higher the more conservative
the model.

lambda [0, 0.1, 1]
L2 regularization term on weights.
The higher the more conservative
the model.

learning_rate [0.001, 0.01, 0.1, 1] Step size shrinkage used in update
to prevent overfitting.

Extreme Gradient
Boost

updater [shotgun, coord_descent] Choice of algorithm to fit linear model.

54



5.4. EXPERIMENTAL SETTINGS

5.4.3 Cross-Validation Details

For the tasks of predicting cytokine levels (both in regression and classification), pre-
dicting AD from TI, from IB, from TI and IB and of predicting age group, due to the
limited size of the datasets (varying between 13 and 38, without oversampling), the
nested CV was performed with a leave-one-out approach.

LOOCV is a CV technique that is particularly useful when the size of the dataset
is limited. In LOOCV, the model is trained on all observations except one (naturally,
test set observations are excluded as well). That one observation is used to esteem
the predictive power of the model and the procedure is repeated the same number of
times as the number of samples in the dataset [176]. Overall, this method provides a
good estimate for the model’s performance, but it is very computationally expensive
(since it requires training 𝑛 models on an 𝑛 large dataset), hence it is ideal for small or
imbalanced datasets [177].

In most tasks of this study this technique was viable for the outer loop of the
nested approach, in order to achieve a robust measure of algorithm performance. The
inner loop of the nested CV used a 5-fold cross-validation for hyperparameter tuning.
The outer loop was then used to assess the general performance of the model with
the optimal hyperparameters identified in the inner loop. To better illustrate this
procedure the pseudocode outlining the steps involved in both the inner and outer
loops is presented below.

Algorithm 1 Nested LOOCV and 5-Fold Cross-Validation.
1: Input: Dataset 𝐷 with 𝑁 samples, Model 𝑀, Hyperparameter set 𝐻
2: Output: Average performance of 𝑀 across all 𝑁 samples (LOOCV results)
3: for each sample 𝑖 in dataset 𝐷 do
4: Split 𝐷 into:
5: Training set 𝐷𝑡𝑟𝑎𝑖𝑛 = 𝐷 \ {𝑖}
6: Test set 𝐷𝑡𝑒𝑠𝑡 = {𝑖}
7: Inner Loop: Perform 5-Fold Cross-Validation on 𝐷𝑡𝑟𝑎𝑖𝑛 for hyperparameter

tuning
8: for each fold 𝑓𝑗 in 𝐷𝑡𝑟𝑎𝑖𝑛 (with 5 folds) do
9: Train 𝑀 on 𝐷𝑡𝑟𝑎𝑖𝑛 \ 𝑓𝑗

10: Validate 𝑀 on fold 𝑓𝑗
11: end for
12: Identify best hyperparameters 𝐻𝑜𝑝𝑡 from the 5-Fold CV
13: Train final model 𝑀 on full 𝐷𝑡𝑟𝑎𝑖𝑛 using 𝐻𝑜𝑝𝑡

14: Test model 𝑀 on 𝐷𝑡𝑒𝑠𝑡 and record performance
15: end for
16: Aggregate performance metrics from all 𝑁 iterations
17: Optional: For larger datasets, replace LOOCV with 𝐾-Fold CV in the outer loop:
18: Set 𝐾 (e.g., 𝐾 = 8)
19: Perform steps (1-13) but divide 𝐷 into 𝐾 folds for outer validation

In the case of predicting AD utilizing serum data, by virtue of the larger dataset size,
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an 8-fold stratified CV was utilized instead of the LOOCV (represented in the optional
part of the pseudocode provided). This decision was made for two fundamental reasons:
firstly, the LOO approach would have been computationally prohibitive; secondly, with
a sufficient number of samples (79 in this train set), the K-fold CV provided a more
robust and reliable validation process. This 8-fold CV, allowed for the iterative division
of approximately 70 samples to be used in the inner loop for hyperparameter tuning
and around 10 samples to be left out for outer validation layer, providing a balanced
division of the data.

5.4.4 Oversampling Techniques

The Synthetic Minority Over-Sampling Technique (SMOTE) algorithm is a common
data resampling technique which functions by identifying the nearest 𝑘 neighbors to
any instance of the minority class and then generating new data points along the lines
connecting these neighbors. This is achieved by selecting random positions on these
lines, calculated as a combination of the original data point and a neighbor [178]. The
formal representation is presented in equation 5.1.

𝑋new = 𝑋𝑖 + (𝑋𝑗 − 𝑋𝑖) × rand(0, 1) (5.1)

Where:

• 𝑋new is synthetic data created by SMOTE,

• 𝑋𝑖 ∈ 𝑇 is the selected instance from the minority class,

• 𝑋𝑗 ∈ 𝑇 is one of the 𝐾 nearest neighbors of 𝑋𝑖 ,

• rand(0, 1) is a random number between 0 and 1 that leads to the selection of a
random point along the "line segment" between the instances.

SMOTE has become the benchmark for dealing with imbalanced data, proving,
despite its simplicity, to be successful and robust when applied to several problems from
various domains [179]. Nonetheless, regardless of its versatile nature, this technique, as
described, functions only for classification problems [178]. In actuality, the continuous
nature of the target variable, in regression problems, makes the oversampling task
more complex, for, in theory, there could be an endless number of values to consider.
Adding to that, there is also the issue of determining which values of the target
are more or less relevant [180]. Some variations to the SMOTE algorithm, such as
SMOTE for Regression (SMOTE-R) [181] or Geometric SMOTE (G-SMOTE) [182] have
been presented to allow the use of this oversampling strategy for regression. An
algorithm of particular relevance to this project was SMOGN [180], owing to its free
availability and ease of implementation as a Python package. SMOGN combines
two oversampling strategies: SMOTE-R and introduction of gaussian noise, with
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random under-sampling, however the algorithm provides the flexibility to disable this
undersampling feature. SMOGN generates new synthetic data points with SMOTE-R
when the data point selected and its selected k-nearest neighbor are “close enough”,
and uses the introduction of gaussian noise when instances are "more distant" [180].
This algorithm has shown to improve the performance of regression models in several
different fields [183–185].

Referring to the details of the oversampling procedure used in this project, in the
case of regression, SMOGN resampling algorithm was utilized on the training data.
For its execution, undersampling was turned off, for it was not of interest to eliminate
samples from the dataset. The Seed parameter was set to 1 for reproducibility and
samp_method parameter was defined to "extreme" so a higher level of oversampling
was performed, compared to the default setting. Other hyperparameters were set with
their default values. Regarding classification, the algorithm for oversampling, SMOTE,
only possesses 3 tuneable parameters: sampling_strategy, random_state and k_neighbors.
Sampling_strategy, specifies the class targeted by the resampling, it was set to ’auto’
so the minority class is oversampled. Random_state was set to 42 for reproducibility.
Finally, k_neighbors was set to 2 when predicting cytokine levels, as this was the highest
number which enabled oversampling for all targets. When the task was to predict AD
or age group, this parameter was set to its default value of 5 as this has been frequently
found to be an optimal value for this parameter [186].

57





6

Results

This chapter presents the findings of the implementation of the approaches presented in
the previous chapter. Section 6.1 introduces the general analysis of the dataset utilized.
Section 6.2 entails the results for the models predicting various TI cytokine levels
under different stimulation conditions, focusing on the most successful regression and
classification models in each task. At last, results for models predicting AD are entailed
in Section 6.3, with respective SHAP plots, for facilitation of interpretability. More
extensive details of model results can be found in annex I.

6.1 General Data Analysis

For the purpose of general data analysis, the primary dataset was partitioned into
two distinct subsets in order to enable a more focused investigation. The first subset,
referred to as the serum dataset, encompasses all 99 participants from the study, with
corresponding measurements of serum circulating cytokine levels. The second subset,
termed the TI dataset, consists of 38 participants from the original 99, for whom TI
measurements are available (refer to Table 5.5 in Chapter 5 for clarification on data
available for each predictive task). Notably, within this TI subset, additional IB data
was collected, however, due to constraints of data availability, only 35 participants have
these corresponding measurements.

For the sake of clarity and methodological rigor, the analysis was conducted in two
parts: the first one (presented on Subsection 6.1.1) focuses on the 38 samples in the TI
subset, while the second section (presented on Subsection 6.1.2) focuses on the whole
cohort of 99 samples in the serum dataset.

6.1.1 Analysis on TI and IB part of Dataset

Firstly, we looked at the distribution of sex for the TI part of the dataset. As depicted
in Figure 6.1 there is overall a higher proportion of females in the dataset, however
with sex being balanced across HCs and AD patients. Subsequently, distribution of age
across the dataset was analysed. Figure 6.2 highlights that AD patients are generally
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older than the HC subjects in this dataset (median age of 55 years for HCs versus
median of around 78 years for AD patients). This is not unexpected as age is highly
correlated with the development of AD, with, as has previously been mentioned, most
patients’ age of onset being over 65 years [24].

Figure 6.1: Box plot of TI subjects’ sex per disease status

Figure 6.2: Box plot of TI subjects’ age per disease status

Afterwards, we analysed the distribution of macrophage expressed TNF𝛼, IL-6,
IL-10, IL-1𝛽 and IL-1RA under the different stimulation conditions applied in the study
and respective differences between HCs and subjects with AD. For TNF𝛼 (Figure 6.3),
this cytokine appears to express the most variation between the 2 groups in conditions
Pr LPS, with its expression in AD patients being enhanced. The same is true for IL-6
as evidenced in the boxplot of Figure 6.4. For IL-10, Figure 6.5 depicts apparently
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close distributions for the 2 groups under all considered stimuli. For IL-1𝛽, again
this cytokine displays similar distributions within the 2 groups, however with a more
widespread variation encompassing higher values in conditions Pr LPS (Figure 6.6).
Lastly, IL-1RA seemingly presents similar distributions across AD patients and HCs,
with slightly decreased median values for AD patients except for LPS LPS conditions
(as observable in Figure 6.7).

Figure 6.3: Box plot of macrophage expressed TNF𝛼 levels under different stimulation
conditions per disease status. Logarithmic scale was applied.

Figure 6.4: Box plot of macrophage expressed IL-6 levels under different stimulation
conditions per disease status. Logarithmic scale was applied.

Following, we plotted the levels of IgG antibodies against the pathogens considered
in this study, for comparison between HCs and AD patients as presented in Figure 6.8.
Concerning, HSV-1/2, HCs show a wider distribution of IgG levels compared to AD
patients, with median antibody levels being slightly increased in AD patients. On
the other hand, the AD cohort exhibits a wider spread of IgG levels for H. pylori
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Figure 6.5: Box plot of macrophage expressed IL-10 levels under different stimulation
conditions per disease status. Logarithmic scale was applied.

Figure 6.6: Box plot of macrophage expressed IL-1𝛽 levels under different stimulation
conditions per disease status.
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Figure 6.7: Box plot of macrophage expressed IL-1RA levels under different stimulation
conditions per disease status.

with a higher median compared to HCs, indicating that some AD patients present
significantly higher antibody levels for this pathogen. Regarding CMV, both groups
display similar IgG distributions, with overlapping medians and similar interquartile
ranges. Pertaining to C. pneumoniae, AD patients show a significantly higher median
compared to HCs and also present a notable increase in the upper range of antibody
levels for this bacterium. Lastly, both groups present relatively low IgG levels for B.
burgdorferi with similar distributions and a small number of outliers.

Furthermore, the correlation matrix for these IB features was also plotted and is
presented in Figure 6.9, allowing for the detection of moderate positive correlation
between HSV-1/2 and CMV IgG levels, as well as a moderate negative correlation
between CMV and B. burgdorferi serum antibody concentrations.
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Figure 6.8: Box plot of IB levels for different pathogens per disease status.

Figure 6.9: Correlation matrix for IB levels for different pathogens.

6.1.2 Analysis on Serum Part of Dataset

For the analysis of the broader serum dataset, again we looked into the distribution of
sex across AD patients and HCs (Figure 6.10), with females representing once more
a higher proportion of either class, with a slightly higher number of female controls
compared to female AD patients. The boxplots for age (Figure 6.11), depict once more
a higher proportion of elder individuals in the AD cohort, although this difference is
less pronounced, with the median age for HCs being around 71 years and the median
for AD patients being around 76 years.

In order to visualize variations in serum cytokine levels between AD patients and
HCs, boxplots for the proteins were created and organized into separate plots based on
their biological functions related to the disease as can be see in Figure 6.12. Figure 6.12a
displays boxplots for serum concentration of pro-inflammatory cytokines. In general,
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Figure 6.10: Box plot of serum subjects’ sex per disease status.

Figure 6.11: Box plot of serum subjects’ age per disease status.

across most cytokines (e.g., TNF𝛼, IL-6, IL-1𝛽, Granulocyte Colony-Stimulating factor
(G-CSF)), AD patients tend to have lower median concentrations than HCs, and also
often display less variability, with the exceptions of IL-8, IFN𝛾, G-CSF and IL-17A
which have broader or similar distributions with lower concentrations overall.

Figure 6.12b presents boxplots for serum concentration of anti-inflammatory cy-
tokines. AD patients show narrower distributions for most cytokines, with the exception
of IL-33 and in general also tend to have lower median values compared to HCs, BDNF
being the only anti-inflammatory cytokine with a higher median level.

Finally, boxplots for serum concentration of regulatory cytokines are depicted in
Figure 6.12c. Again the distributions of the majority of these cytokines are narrower
in AD patients than in HCs. GM-CSF presents the most significant difference between
the 2 groups with AD patients exhibiting higher levels of this cytokine. Concerning
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fractalkine, VEGF-A and MCP-1, both groups show high concentrations of these pro-
teins, with minimal differences between the two. IL-2 and IL-4 present overall low
concentrations, however AD patients have a higher median value for IL-2 and present
a lower median value for IL-4 in comparison to the control group.
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(a) Pro-inflammatory cytokine levels.

(b) Anti-inflammatory cytokine levels.

(c) Regulatory cytokine levels.

Figure 6.12: Box plots of serum circulating cytokine levels per disease status for (a)
pro-inflammatory, (b) anti-inflammatory, and (c) regulatory cytokines. Logarithmic
scale was applied.
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6.2 Predicting TI Cytokine Levels

The objective of this part of the work was to assess the predictability of several
macrophage- expressed cytokines under different stimulation conditions in AD patients
and HCs based mainly on IB features (making use also of subjects’ sex and age).

Table 6.1 summarizes the results of the most successful regression models employed,
with and without oversampling the data, highlighting the best-performing algorithms
for each cytokine and condition, along with their corresponding most illustrative
metrics, the MdAE and Pearson’s correlation coefficient (R value). Best results (in
which the R value is higher than 0.3, indicating moderate correlation between actual
and predicted values) were achieved for TNF𝛼 in NT and Pr LPS conditions, IL-6 in NT,
Pr LPS and LPS LPS conditions, IL-10 Pr Ca, Ca LPS, and LPS LPS, IL-1𝛽 NT, Pr LPS
and Pr Ca and IL-1RA in conditions NT, Pr LPS and LPS LPS. Notably, oversampling
the data improved model performance in nearly every instance where it was feasible.

Table 6.1: Table of best results for predicting cytokine levels - regression.
Only original data With oversampled data

Protein Treatment Range of values Best Algorithm MdAE Pearson’s coefficient (R) Best Algorithm MdAE Pearson’s coefficient (R)

TNF𝛼

NT 0.65 - 27.93 Non predictive - - XGB 5.792 0.509
Pr LPS 1.75-2705.91 SVR 354.53 0.490 KNN 381.148 0.593
Pr Ca 1.75 - 30.00 Non predictive - - No oversample - -
Ca LPS 92.12 - 556.73 Non predictive - - No oversample - -
LPS LPS 44.5 - 741.82 Non predictive - - Non predictive - -

IL-6

NT 2.51 - 461.71 Non predictive - - RF 61.976 0.320
Pr LPS 76.04 - 2739.48 RF 520.27 0.316 RF 445.829 0.436
Pr Ca 5.02 - 250.31 Non predictive - - No oversample - -
Ca LPS 36.93 - 640.01 Non predictive - - No oversample - -
LPS LPS 16.17 - 498.24 Linear Regression 88.88 0.338 RF 71.456 0.365

IL-10

NT 0.10 - 12.15 Non predictive - - Non predictive - -
Pr LPS 0.98 - 68.47 Non predictive - - No oversample - -
Pr Ca 0 - 6.05 Non predictive - - Decision Trees 0.7012 0.359
Ca LPS 0.32 - 13.64 DT 1.784 0.306 RF 2.133 0.657
LPS LPS 0.67 - 11.71 KNN 4.05 0.331 No oversample - -

IL-1𝛽
NT 0.25 - 35.43 Non predictive - - RF 3.814 0.400
Pr LPS 0.90 - 34.61 Ridge Regression 3.289 0.345 RF 4.197 0.451
Pr Ca 0.42 - 24.12 Non predictive - - RF 2.286 0.474

IL-1RA

NT 1095.66 - 6293.75 XGB 1075.939 0.313 No oversample - -
Pr LPS 2013.46 - 6365.57 XGB 488.807 0.573 No oversample - -
Pr Ca 1066.64 - 5947.04 Non predictive - - No oversample - -
Ca LPS 984.26 - 5406.42 Non predictive - - No oversample - -
LPS LPS 987.22 - 4996.25 Linear Regression 777.045 0.376 No oversample - -

Table 6.2 displays the results for the top-scoring classifiers when values for each
cytokine were converted to categorical labels, as explained in Section 5.3.2 of Chapter
5, with and without the application of SMOTE for oversampling the data, focusing as
well on the optimal algorithm for the task and presenting accuracy and general F1 score.
Not all variables were suitable for classification, as explained in the previous chapter,
due to complete lack or insufficient representation within certain classes. Among the
variables that were classifiable, only IL-10 Pr LPS, IL-10 LPS LPS, and IL-1RA Ca LPS
reached an accuracy of 50% or greater without oversampling. Upon applying SMOTE
algorithm for oversampling, several additional variables achieved or surpassed the 50%
accuracy threshold, including IL-6 in Pr LPS and LPS LPS conditions, IL-10 Pr LPS and
LPS LPS, IL-1𝛽 NT, and IL-1RA in conditions NT, Pr LPS, Pr Ca, and Ca LPS. Among
these, a model for IL-1𝛽 NT yielded the highest performance, achieving an accuracy of
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65% and an F1 score of 61%.

Table 6.2: Table of best results for predicting cytokine levels - classification.

Only original data With oversampled data
Protein Treatment Best Algorithm Accuracy F1 Score Best Algorithm Accuracy F1 Score

NT Non classifiable
Pr LPS DT 42.31% 42.94% KNN 42.3% 37.0%
Pr Ca Non classifiable
Ca LPS Non classifiable

TNF𝛼

LPS LPS DT 48.39% 48.82% DT 48.4% 48.4%

NT Non classifiable
Pr LPS KNN 47.37% 45.25% KNN 57.9% 47.2%
Pr Ca Non classifiable
Ca LPS DT 38.46% 30.00% SVC 46.2% 52.1%IL-6

LPS LPS Logistic
Ridge 46.15% 47.88% Logistic

Regression 50.0% 51.1%

NT Non classifiable
Pr LPS DT 50.00% 49.46% RF 56.3% 56.7%
Pr Ca Non classifiable
Ca LPS Non classifiableIL-10

LPS LPS Logistic
Regression 52.94% 53.33% SVC 58.8% 58.6%

NT DT 48.28% 34.66% RF 65.5% 61.0%

Pr LPS Logistic
Lasso 34.48% 31.04% RF 44.8% 44.2%IL-1𝛽

Pr Ca Non classifiable

NT DT 42.31% 36.85% RF 53.8% 54.1%
Pr LPS DT 46.15% 43.21% SVC 50.0% 50.6%

Pr Ca Logistic
Regression 30.77% 29.63% SVC 50.0% 50.7%

Ca LPS SVC 50.00% 50.59% SVC 57.1% 53.3%IL-1RA

LPS LPS DT 44.44% 33.10% Logistic
Ridge 44.4% 43.9%

Predicting TNF𝛼

The deployed regression algorithms were not able to reach performance levels that
would allow the models to be considered reliably predictive using only the original
data for TNF𝛼 in NT conditions, (with the best-performing algorithm yielding an R
value of 0.169 between real and predicted values). However, with oversampled data,
the XGB algorithm achieved a significantly higher R value of 0.509, indicating a more
accurate prediction, and a MdAE of 5.792. Figure 6.13a presents the scatter plot for the
actual versus predicted values by the model and Figure 6.13b the model’s distribution
of residues. These together, indicate that the model predictions are generally close to
the actual values for many observations, nevertheless there are some instances where
the predictions deviate more significantly, notably for higher values of this variable.

For the Pr LPS condition, SVR performed best on the original data, yielding an R
value of 0.49 and MdAE of 354.53 (as this variable presents a wide range of values, vary-
ing between 1.75 and 2705.91). Notwithstanding, the KNN algorithm outperformed it
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(a) Scatter plot of actual vs predicted values (b) Distribution of residues

Figure 6.13: KNN model LOOCV results for predicting TNF𝛼 NT with oversampled
data.

when using oversampled data, resulting in a higher correlation of 0.593 but with an
increased MdAE of 381.148. As can be observed in Figure 6.14, the SVR model performs
well on lower values of the target variable, which significantly improves in the XGB
model when data is oversampled, indicating this model captures best the variation in
the data, presenting also a smoother distribution of residues.

Interestingly, for the Pr Ca, Ca LPS and LPS LPS conditions, the regression models
were non-predictive, with R values lower than 0.3.

In classification, only TNF𝛼 Pr LPS and TNF𝛼 LPS LPS were classifiable, with the
best classifier for the first condition achieving an accuracy of only 42% even when
data was oversampled and the top-performing algorithm for the LPS LPS condition
achieving only around 48% accuracy, even when trained with oversampled data.
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(a) SVR: Actual vs predicted values scatter
plot (b) SVR: Distribution of residues

(c) KNN (oversampled): Actual vs pre-
dicted values scatter plot

(d) KNN (oversampled): Distribution of
residues

Figure 6.14: LOOCV results for predicting TNF𝛼 Pr LPS: (a-b) SVR model without
oversampling; (c-d) KNN model with oversampling.

Predicting IL-6

For IL-6, the original data yielded non-predictive regression models for the NT, Pr
Ca and Ca LPS conditions. However, when data was oversampled the RF model for
IL-6 NT yielded an R value of 0.32 and a MdAE of 61.976. Figure 6.15a illustrates this
moderate correlation between the real values and the model’s outputs, which once
again shows more significant deviation (higher residues displayed in Figure 6.15b) for
the few instances corresponding to higher values of the cytokine in this condition.

For the Pr LPS condition, RF also performed best in regression, with an R value
of 0.316, which improved to 0.436 with oversampling. The scatter plots presented in
Figures 6.16a and 6.16c demonstrate the mild improvement in the second model as the
points in this plot are closer to the ideal line (represented in red) and as the distribution
of residues in Figure 6.16d for the oversampled data model displays overall a lower
range of absolute residues, indicating that the model yields improved accuracy and
tighter predictions compared to the non-oversampled data model.

Finally, regarding IL-6, the performance in predicting the LPS LPS condition also saw
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(a) Scatter plot of actual vs predicted values (b) Distribution of residues

Figure 6.15: RF model LOOCV results for predicting IL-6 NT with oversampled data.

(a) RF: Actual vs predicted values scatter
plot (b) RF: Distribution of residues

(c) RF (oversampled): Actual vs predicted
values scatter plot

(d) RF (oversampled): Distribution of
residues

Figure 6.16: LOOCV results for predicting IL-6 Pr LPS: (a-b) RF model without
oversampling; (c-d) RF model with oversampling.
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improvement with oversampling, with RF regressor outperforming linear regression
by reducing the MdAE (from 88.88 to 71.46) and increasing the correlation coefficient
(from 0.338 to 0.365). Even so, as the improvement is only mild the scatter plots for these
models are rather similar as can be observed in Figures 6.17a and 6.17c, however major
differences can be visualized in the plots for the distribution of residues, as the one for
the RF model (Figure 6.17d) shows a higher concentration of lower residuals and fewer
large errors, despite having a wider overall range of residuals when compared to the
linear model (Figure 6.17b).

(a) Linear Regression: Actual vs predicted
values scatter plot

(b) Linear Regression: Distribution of
Residues

(c) RF (oversampled): Actual vs predicted
values scatter plot

(d) RF (oversampled): Distribution of
Residues

Figure 6.17: LOOCV results for predicting IL-6 LPS LPS: (a-b) Linear Regression model;
(c-d) Random Forest model with oversampled data.

With regards to classification results for this cytokine, neither IL-6 NT nor IL-6 Pr Ca
enabled classification. In the case of IL-6 Pr LPS, KNN was the best classifier, achieving
47.4% accuracy and an F1 score of 45.3% on the original data. With oversampled
data, KNN improved, being again the best-performing algorithm and reaching an
accuracy of 57.9%, although the F1 score only modestly improved to 47.2%. This
performance is illustrated in the confusion matrix of the model in Figure 6.18 as this
was the best performance achieved for this protein. However, as evidenced by the
absence of instances in the central vertical column of the matrix, this model fails to
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capture and predict the instances representing medium levels of this variable.
For IL-6 Ca LPS, the best results were yielded by the DT algorithm, which, even

so, only achieved an accuracy of 38.5% and an F1 score of 30% on original data.
Oversampling helped improve performance, with SVC reaching an accuracy of 46.2%
and an F1 score of 52.1%.

Lastly, in LPS LPS conditions, logistic Ridge regression and logistic regression both
performed similarly with original and oversampled data, attaining accuracies of 46.2%
and 50.0%, and F1 scores of 47.9% and 51.1%, respectively.

Figure 6.18: Confusion matrix for KNN model predicting IL-6 Pr LPS with oversampled
data.

Predicting IL-10

In the case of IL-10, conditions where regression models did not turn out predictive
included IL-10 NT and Pr LPS. On the other hand, the Pr Ca condition showed notable
improvement when data was augmented, with the DT algorithm achieving an R value
of 0.359 and a MdAE of 0.701. The scatter plot for actual versus predicted values in
Figure 6.19a displays data points fairly closely aligned with the ideal line, indicating
a general good fit of the model. Nonetheless, the presence of one significant outlier
suggests that the model struggles to accurately predict certain cases, which is reflected
in the higher absolute residue value depicted in Figure 6.19b.

Concerning the Ca LPS condition, the DT regressor algorithm performed best on
original data with an R value of 0.306. This mild correlation between the model’s output
and the real values is patent in Figure 6.20a where data points are rather scattered across
the plot and not so distributed along the ideal line, in conformity with the somewhat
increased proportion of higher residue values displayed in Figure 6.20b. Howbeit,
when data was oversampled, RF emerged as the best algorithm with a significant
increase in correlation, in fact achieving the best results overall, with an R value of
0.657, despite the slight increase in MdAE compared to the previous model (from 1.784
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(a) Scatter plot of actual vs predicted values (b) Distribution of residues

Figure 6.19: DT model LOOCV results for predicting IL-10 Pr Ca with oversampled
data.

to 2.133). Figure 6.20c displays a scatter plot with data points much more aligned with
the ideal line and in Figure 6.20d the distribution of residues presents a lower frequency
for larger residues.

For IL-10 LPS LPS, although it was not possible to oversample the data via SMOGN
algorithm, the KNN model still reached an R value above the threshold of 0.3 solely
on original data, and a MdAE of 4.05. The scatter plot for the model is displayed
in Figure 6.21a, with mid-range values being better captured by the model, and Fig-
ure 6.21b displays the model’s residue distribution, which is rather spread out, with a
significant number of residuals in the higher range and the frequencies being nearly
evenly distributed across the residual range, with several peaks.

In respects to classification results, only Pr LPS and LPS LPS conditions showed
sufficient label variation (significant instances of each target class) in order to train
predictive models. In the case of IL-6 Pr LPS, the DT algorithm gave an accuracy of
50.00% and an F1 score of 49.46% on original data. After oversampling, RF improved
these metrics, achieving 56.3% accuracy and an F1 score of 56.7%, this performance is
shown in Figure 6.22. The analysis of this confusion matrix of the model reveals the
classifier’s limitation in its ability to discern between high and medium instances.

As for IL-10 with LPS LPS treatment, the logistic regression model achieved 52.94%
accuracy and an F1 score of 53.33% on original data, while after oversampling, SVC
performed better with 58.8% accuracy and an F1 score of 58.6% (see Figure 6.23).
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(a) DT: Actual vs predicted values scatter
plot (b) DT: Distribution of Residues

(c) RF (oversampled): Actual vs predicted
values scatter plot

(d) RF (oversampled): Distribution of
Residues

Figure 6.20: LOOCV results for predicting IL-10 Ca LPS: (a-b) Decision Trees model;
(c-d) Random Forest model with oversampling.

(a) Scatter plot of actual vs predicted values (b) Distribution of residues

Figure 6.21: KNN model LOOCV results for predicting IL-10 LPS LPS.
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Figure 6.22: Confusion matrix for RF model predicting IL-10 Pr LPS levels with over-
sampled data.

Figure 6.23: Confusion matrix for SVC model predicting IL-10 LPS LPS levels with
oversampled data.

Predicting IL-1𝛽

IL-1𝛽 predictions were most successful for the Pr LPS condition when data was not
oversampled, however all three conditions considered for IL-1𝛽 yielded an R value
equal or superior to 0.4 when oversampling was deployed.

IL-1𝛽 NT was most successfully modelled by RF when data was oversampled, with
an R value of 0.4 and MdAE of 3.814. Nonetheless, the scatter plot of Figure 6.24a
shows the model again does not fit well to the instances that display significantly higher
values and in this way the distribution of residues in Figure 6.24b presents a few larger
residuals, extending the tail of the distribution.

Without oversampling, IL-1𝛽 Pr LPS was most successfully modelled by Ridge
regression, with an R value of 0.345 and MdAE of 3.29. Application of SMOGN once
again improved performance with the correlation coefficient of a RF model increasing
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(a) Scatter plot of actual vs predicted values (b) Distribution of residues

Figure 6.24: RF model LOOCV results for predicting IL-1𝛽 NT with oversampled data.

to 0.451. Comparing these metrics and the scatter plots depicted on Figure 6.25a for
the Ridge regressor and Figure 6.25c for the RF model with oversampled data, it can
be assessed that the latter is better suited to handle the variability of this variable.
Respective residue distributions (Figures 6.25b and 6.25d) also highlight the lower
frequency of residuals in the second model as well as overall smaller range for the
errors.

IL-1𝛽 Pr Ca displayed mildly predictive results when data was oversampled, as a RF
model yielded an R value of 0.474 and MdAE of 2.286. This model exhibits a moderate
level of accuracy, as illustrated by the scatter plot in Figure 6.26a, however with the
presence of outliers, particularly one data point far from the ideal line. The distribution
of residuals in Figure 6.26b also shows that while many predictions are rather close to
the actual values, there are some notable errors. In this way, the model captures the
variability of a major part of the dataset but is off in certain cases, particularly when
the variable presents significantly higher values than typically observed.

Concerning these variables’ conversion to categorical values, classification was
possible for NT and Pr LPS conditions. Results for IL-1𝛽 NT show DT yielded 48.28%
accuracy and a relatively low F1 score of 34.66%. After oversampling via SMOTE, RF
improved performance to 65.5% accuracy and an F1 score of 61.0%, representing a
substantial improvement, and the highest performance among the cytokines in the
dataset. The model’s performance is depicted in Figure 6.27.

In respects to IL-1𝛽 Pr LPS, logistic Lasso regression only achieved 34.48% accuracy
and an F1 score of 31.04% on original data. After oversampling, the best-performing
algorithm, RF, improved performance to 44.8% accuracy and an F1 score of 44.2%.
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(a) Ridge Regression: Actual vs predicted
values scatter plot

(b) Ridge Regression: Distribution of
Residues

(c) RF (oversampled): Actual vs predicted
values scatter plot

(d) RF (oversampled): Distribution of
Residues

Figure 6.25: LOOCV results for predicting IL-1𝛽 Pr LPS: (a-b) Ridge Regression model;
(c-d) Random Forest model with oversampling.

(a) Scatter plot of actual vs predicted values (b) Distribution of residues

Figure 6.26: RF model LOOCV results for predicting IL-1𝛽 Pr Ca with oversampled
data.
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Figure 6.27: Confusion matrix for RF model predicting IL-1𝛽 NT levels with oversam-
pled data.

Predicting IL-1RA

For IL-1RA regression results, SMOGN algorithm did not allow for oversampling of
the data. Even so, moderately predictive models were still found for NT, Pr LPS and
LPS LPS conditions.

XGB was the best performer for the NT condition with an R value of 0.313 and MdAE
of 1075.939 (having in account that the values for these variable range between 1095.66
and 6293.75). This model captures the general trend of the data but exhibits variability,
as indicated by the scatter of the data points in Figure 6.28a and the distribution of
residuals in Figure 6.28b which shows that larger prediction errors are less common,
however displaying the presence of larger residuals (of over 2000).

(a) Scatter plot of actual vs predicted values (b) Distribution of residues

Figure 6.28: XGB model LOOCV results for predicting IL-1RA NT.

XGB was once again the best-performing algorithm for the prediction of IL-1RA Pr
LPS levels, with the highest R value on original data of 0.573 and MdAE of 488.81. Once
again, the plot of actual versus predicted values displayed in Figure 6.29a shows the
model captures the general trend in the data, without significant outliers, however data
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points are still considerably scattered and the distribution of residues (Figure 6.29b)
displays a substantial number of larger residuals despite the majority of residuals being
clustered around the range of 0 to 500.

(a) Scatter plot of actual vs predicted values (b) Distribution of residues

Figure 6.29: XGB model LOOCV results for predicting IL-1RA Pr LPS.

Finally, IL-1RA LPS LPS was best modelled by simple linear regression, which
achieved a MdAE of 777.05 and R value of 0.376. Again this model shows modest
performance. The data points in the plot of Figure 6.30a spread around the ideal line,
however with significant scatter and no visible outliers. The relatively broad spread
of the residuals and relatively high frequency of moderate to substantial prediction
errors depicted in Figure 6.30b demonstrate the model’s difficulty in capturing more
nuanced variations in the data.

(a) Scatter plot of actual vs predicted values (b) Distribution of residues

Figure 6.30: Linear regression model LOOCV results for predicting IL-1RA LPS LPS.

In the matter of classification results for this cytokine, models were built for each
condition and nearly every model substantially improved with the deployment of
SMOTE. For IL-1RA NT, the DT model yielded 42.31% accuracy and an F1 score of
36.85% on original data, but oversampling improved these metrics to 53.8% accuracy
and F1 score of 54.1% with RF.

For Pr LPS condition, again DT was the best algorithm when trained only on original
data, achieving 46.15% accuracy and an F1 score of 43.21%. After oversampling, SVC
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slightly improved the best performance achieved, resulting in 50.0% accuracy and a
50.6% F1 score.

In Pr Ca condition, models for IL-1RA, were not very successful when trained solely
on original data with logistic regression achieving a top performance of just 30.77%
accuracy and 29.63% F1 score. Oversampling improved performance, enabling SVC to
reach an accuracy of 50.0% and an F1 score of 50.7%.

The best performing model on both original and oversampled data for IL-1RA Ca
LPS, was SVC with an accuracy of 50.00% and an F1 score of 50.59% in the first case,
and improvement to 57.1% accuracy and 53.3% F1 score in the latter. This was the best
result achieved for this cytokine, and the confusion matrix for the oversampled model is
presented in Figure 6.31. The analysis of the matrix reveals that the classifier’s primary
limitation is its difficulty in accurately predicting instances categorized as "high".

To conclude, IL-1RA LPS LPS was one of the few cases where oversampling did not
significantly improve the classifier’s performance. When training only with original
data, the DT algorithm performed with 44.4% accuracy and an F1 score of 33.1%.
Following oversampling of the train set, the best metrics were achieved by logistic
Ridge regression, with an accuracy of 44.4% and a mildly improved F1 score of 43.9%

Figure 6.31: Confusion matrix for SVC model predicting IL-1RA Ca LPS levels with
oversampled data.

6.3 Predicting Alzheimer’s Disease

The purpose of this portion of the work is to assess AD predictability based on different
features of our dataset and thus exploring different relationships within the data and
the disease. When sample size allows it, final models have also been developed and
interpreted and, thus, SHAP plots are presented.
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6.3.1 Predicting AD from Infectious Burden

Firstly, AD was predicted based on IB data, with measures of subjects’ antibody levels
for HSV-1/2, Helicobacter pylori, CMV, Chlamydia pneumoniae and Borrelia burgdorferi. As
for this task the sample size is only of 35, LOOCV results are presented. As displayed on
Table 6.3 the best model achieved was RF without oversampling. This model achieved
an accuracy of around 63% and a general F1 score of around 62%. As illustrated in the
confusion matrix of the model (Figure 6.32a), the model was particularly successful in
identifying AD cases, successfully classifying 14 out of the 20 cases, however with a
lower recall for the negative class, only correctly identifying 8 out of the 15 HCs. The
AUC achieved, as shown in the ROC curve plot of Figure 6.32b was of 0.56.

Table 6.3: Performance metrics of top-scoring predictive model (RF) for AD using IB
data.

RF Precision Recall F1 Score

General 0.619 0.617 0.617
AD 0.667 0.700 0.683
Accuracy 0.629
AUC 0.560

(a) (b)

Figure 6.32: RF model LOOCV results for predicting AD from IB data: (a) Confusion
matrix; (b) ROC curve.

6.3.2 Predicting AD from Trained Immunity Cytokines

For this task, models predicting AD were trainedon TI data. Finalmodels were deployed
and performance assessed on a test set of 8 samples. Table 6.4 displays performance
metrics for the two best models achieved, median-filled logistic regression with EN
penalty and mean-filled logistic regression with L1 penalty and oversampling enabled.
Both models achieve similar results with identical confusion matrices (Figures 6.33a and
6.34a), an accuracy of 87.5% in the test set and recall of 100% for AD class. Both models
reach moderately high AUCs (Figures 6.33b and 6.34b) of 0.88 and 0.81 respectively.

83



CHAPTER 6. RESULTS

Table 6.4: Performance metrics of top-scoring predictive models for AD Using TI
cytokine data.

Logistic EN Precision Recall F1 Score

General 0.900 0.875 0.873
AD 0.800 1.00 0.889
Accuracy 0.875
AUC 0.88
Logistic Lasso Precision Recall F1 Score

General 0.900 0.875 0.873
AD 0.800 1.00 0.889
Accuracy 0.875
AUC 0.81

Having established the performance metrics of the top-performing models in this
task, it was essential to us to gain deeper insights into the decision-making processes
of these models. To achieve this, SHAP plots were employed to interpret and explain
each feature’s contribution to the predictions output by the models.

The findings for median-filled logistic regression with EN penalty are presented
in Figure 6.35. Figure 6.35a depicts that, by order of importance, the top contributing
features for predicting AD are: IL-10 LPS LPS, IL-1𝛽 Pr LPS, TNF𝛼 Pr LPS, IL-6 Pr LPS
and with less impact but still present IL-10 Ca LPS. The test and train set beeswarm
plots presented in Figures 6.35b and 6.35c respectively display that higher values of
IL-1𝛽 Pr LPS, TNF𝛼 Pr LPS and IL-6 Pr LPS lead to the prediction of AD, whereas the
opposite happens with IL-10 LPS LPS, where lower levels of this feature seemingly
lead to prediction of the disease.

Similarly, the SHAP analysis for mean-filled logistic regression with l1 penalty
and data oversampled, displayed in Figure 6.36, reveals a comparable ranking of top
features influencing AD predictions. The primary difference between both models lies
in the order of importance, where TNF𝛼 Pr LPS and IL-6 Pr LPS have swapped places,
indicating a slight shift in their relative impact on the model’s predictions, however
maintaining that higher values lead to predictions of the positive class as happens
with IL-1𝛽 Pr LPS. Additionally, it is noteworthy that IL-10 Ca LPS, which mildly
contributed to the previous model, no longer plays a significant role in this alternative
one.

In summary, both of our top-scoring models are in large agreement with each other.
Features that are important for both models’ prediction of AD vs HC are IL-10 in
conditions primed with LPS challenged with LPS, IL-1𝛽 in Pr LPS conditions, IL-6 Pr
LPS and TNF𝛼 Pr LPS. Interestingly, the top-contributing feature in both models is
IL-10 LPS LPS, where lower values of the anti-inflammatory cytokine in such conditions
lead to prediction of AD.
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(a) (b)

Figure 6.33: Logistic EN regression median-filled model test set results for predicting
AD from TI data: (a) Confusion matrix; (b) ROC curve.

(a) (b)

Figure 6.34: Logistic Lasso regression mean-filled model test set results for predicting
AD from TI data, with oversampling enabled: (a) Confusion matrix; (b) ROC curve.
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(a)

(b)

(c)

Figure 6.35: SHAP plots for logistic EN regression median-filled model predicting AD
from TI data: (a) Feature importance plot; (b) Test set beeswarm plot; (c) Train set
beeswarm plot. 86
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(a)

(b)

(c)

Figure 6.36: SHAP plots for logistic Lasso regression mean-filled model predicting
AD from TI data, with oversampling enabled: (a) Feature importance plot; (b) Test set
beeswarm plot; (c) Train set beeswarm plot.
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6.3.3 Predicting AD from IB and TI

This task combined the data of the two previous tasks (both IB and TI features) for
modelling AD. Once more, a test set consisting of eight samples was used to evaluate
the performance of the final models. The optimal model was a DT classifier obtained
by utilizing this combined dataset in which missing values were imputed using the
median. The performance achieved was in every way similar to when utilizing just
the TI data, with 100% recall for AD class, a general 87.5% accuracy and AUC of 0.88.
Table 6.5 along with Figure 6.37 provide further metrics and insights into this model.

Table 6.5: Performance metrics of top-scoring predictive model for AD using IB and TI
data.

median-filled DT Precision Recall F1 Score

General 0.900 0.875 0.873
AD 0.800 1.00 0.889
Accuracy 0.875
AUC 0.88

Looking into the SHAP explanations provided in Figure 6.38 for the median-filled
DT model, results are very similar to the ones described in the preceding section for the
models trained with solely TI data. Examining Figures 6.38b and 6.38c reveals, once
again, decreased values of IL-10 LPS LPS have strong positive impacts on prediction of
AD, as have increased values of TNF𝛼 Pr LPS. This model did not quite capture the
predictive nature of other pro-inflammatory cytokines when primed with LPS (IL-1𝛽
Pr LPS and IL-6 Pr LPS). However, intriguingly, it picked up on the predictive power
of IL-1𝛽 NT, where lower values of this cytokine appear to be linked to the prediction
of a healthy subject. As this model was also trained with IB, one feature is of key
importance, HSV-1/2, where increased values of this IB feature are positively linked
to the prediction of AD.

(a) (b)

Figure 6.37: DT median-filled model test set results for predicting AD from IB and TI
data: (a) Confusion matrix; (b) ROC curve.
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(a)

(b)

(c)

Figure 6.38: SHAP plots for DT median-filled model predicting AD from IB and TI
data: (a) Feature importance plot; (b) Test set beeswarm plot; (c) Train set beeswarm
plot.
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6.3.4 Predicting AD from Serum Cytokines

For the last task of predicting AD, serum circulating cytokine data was utilized, with a
training set of 79 samples and a test set consisting of 10 HCs and 10 AD patients. Best
models achieved were mean-filled and mode-filled SVCs with accuracies of 75% and
80% respectively. As shown in Table 6.6 and the confusion matrices of Figures 6.39a
and 6.40a the models differ slightly in their successful predictions. The mode-filled
model has a higher overall accuracy and successfully recalls all instances of the negative
class, however only recalling 60% of the samples belonging to the AD class, assigning 4
false negatives. The mean-filled model despite having a lower accuracy, shows superior
recall for class AD and misclassifies only 2 false negatives. The AUC score as shown in
Figures 6.39b and 6.40b is, however, higher in the mode-filled model.

Table 6.6: Performance metrics of top-scoring predictive models for AD using serum
cytokine data.

Mean-filled SVC Precision Recall F1 Score

General 0.753 0.750 0.749
AD 0.727 0.80 0.762
Accuracy 0.75
AUC 0.74
Mode-filled SVC Precision Recall F1 Score

General 0.857 0.800 0.792
AD 1.00 0.600 0.750
Accuracy 0.80
AUC 0.86

Analysing Figures 6.41 and 6.42 provides further insights into the classifiers. In
both these top-scoring models, sex and IL-18 are leading features, being most apparent
in the second model that being female leads to positive predictions, and in either model
(but more evidently in the latter) lower values of IL-18 push the predictions towards
class AD. IL-6, VEGF-A and IL-1𝛽 are of somewhat importance in both models and,
once again, lower levels of these proteins seem to lead to prediction of AD.

A key difference between these models is the importance of IL-10, wherein the first
model it is only of moderate relevance, it becomes a major player in the second model,
being the leading feature. Only in this second model does it have a clear relationship
of lower values significantly pushing towards positive predictions. This might indicate
a better capture of its predictive power in the mean-filled model.

Another protein whose relevance varies between the two models is IL-8 which has
a rather more important role in the mean-filled SVC. Nevertheless, both models seem
to take higher values of this cytokine as a predictor for positive class.

IL-1RA, of moderate importance in the two classifiers, shows contradicting impacts.
In the mode-filled model, higher levels of this protein in the serum seem to be associated
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with predicting AD, whereas in the mean-filled model the opposite appears to be
happening.

(a) (b)

Figure 6.39: SVC mean-filled model test set results for predicting AD from serum data:
(a) Confusion matrix; (b) ROC curve.

(a) (b)

Figure 6.40: SVC mode-filled model test set results for predicting AD from serum data:
(a) Confusion matrix; (b) ROC curve.
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(a)

(b)

(c)

Figure 6.41: SHAP plots for SVC mean-filled model predicting AD from serum data:
(a) Feature importance plot; (b) Test set beeswarm plot; (c) Train set beeswarm plot.
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(a)

(b)

(c)

Figure 6.42: SHAP plots for SVC mode-filled model predicting AD from serum data:
(a) Feature importance plot; (b) Test set beeswarm plot; (c) Train set beeswarm plot.
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6.4 Predicting Age Group (Over/ Under 65)

Lastly, for comparative purposes we predicted age group (being over or under 65 years)
based on TI data. In this dataset this task has vast similarities with predicting AD, since
there are no AD patients with age under 65, as shown in Figure 6.43.

The best models achieved 100% on all metrics as they successfully classified every
instance in the test set. Results are shown for median-filled SVC in Table 6.7 and in the
confusion matrix and ROC curve presented in Figure 6.44.

Figure 6.43: Bar plot of TI subjects’ distribution per age group (over or under 65) and
disease status.

Table 6.7: Performance metrics of top-scoring predictive model for age group using TI
data.

Median-filled SVC Precision Recall F1 Score

General 1.00 1.00 1.00
AD 1.00 1.00 1.00
Accuracy 1.00
AUC 1.00

Analysing the SHAP plots for this optimal model highlights the impact of TI features
on the model’s performance for this task. Firstly, IL-10 LPS LPS is the leading feature
on test set, and its lower values lead to the prediction of being over 65. Additionally,
TNF𝛼 NT is also a principal feature of the model, with again lower values predicting
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belonging to the elderly group. In priority order, IL-1𝛽 increased values in all conditions
included (Pr Ca, Pr LPS and NT) appear to lead to the prediction of an individual being
over the age of 65. Regarding IL-6 NT, higher values lead to positive predictions and
IL-1RA displays different interactions in different conditions, with higher levels of
IL-1RA Pr Ca driving to a positive prediction, in opposition to lower levels of IL-1RA
Pr LPS which lead towards to this elder group prediction. Lastly, for features with
mild relative contributions, IL-10 Ca LPS decreased expression is a contributor to the
model’s prediction of an individual being over the age of 65, as happened with IL-10
LPS LPS.

(a) (b)

Figure 6.44: SVC median-filled model test set results for predicting age group from TI
data: (a) Confusion matrix; (b) ROC curve.
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(a)

(b)

(c)

Figure 6.45: SHAP plots for SVC mode-filled model predicting AD from serum data:
(a) Feature importance plot; (b) Test set beeswarm plot; (c) Train set beeswarm plot.
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To conclude this chapter, Table 6.8 presents an overview of the best results for every
AD-predicting task, as well as the age-predicting task. The corresponding overviews of
results for tasks predicting cytokine levels are shown in Tables 6.1 and 6.2 of Section 6.2.
In Table 6.8, the data employed in each task is summarized (with sample size and brief
description) along with the optimal model identified. The performance of these models
is indicated by accuracy and F1 score. These findings provide a solid foundation for the
subsequent analysis and discussion of the predictive models, which will be explored
in the following chapter.

Table 6.8: Summary of best results for each task predicting AD or age group.

Task Data Best Model Accuracy F1 Score

Predict AD from IB 35 instances
(IgG measures) RF 62.9% 68.3%

Predict AD from TI 38 instances
(cytokine levels expressed
by isolated monocytes)

Logistic EN
Regression 87.5% 87.3%

Logistic Lasso
Regression 87.5% 87.3%

Predict AD from IB and TI 38 instances
(TI and IB data)

Median-filled
DT 87.5% 87.3%

Predict AD from serum 99 instances
(serum cytokine levels)

Mean-filled
SVC 75% 74.9%

Mode-filled
SVC 80% 79.2%

Predict age group
(over/ under 65)

38 instances
(TI data)

Median-filled
SVC 100% 100%
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Discussion

This section analyses the findings and contributions made by the present study. Sec-
tion 7.1 discusses the results from the cytokine-predicting models. Section 7.2 comprises
all findings and implications from the AD predicting models. Namely, Section 7.2.1
discusses what can be concluded in terms of identifying a cytokine profile in primed
and/or challenged cell response for the prediction of AD. Section 7.2.2 explores any
serum cytokine profile found by our predictive models in AD and HC as well as dis-
cussing how these serum models compare to existing ones. Section 7.2.3 reports and
delves into relationships found between IB, AD and cytokine profile. Lastly, Section 7.3
presents how the findings of our AD models compare to the results from the age
predicting task and highlights this study’s main limitations.

7.1 Modelling TI Cytokine Levels in AD

In the present study, we built moderately predictive regression models for ex vivo
monocyte expressed TNF𝛼 in NT and Pr LPS conditions, IL-6 in NT, Pr LPS and LPS
LPS conditions, IL-10 in Pr Ca, and both challenge conditions, IL-1𝛽 in NT and both
priming conditions, and IL-1RA in NT, Pr LPS and LPS LPS conditions. Overall, our
results display high variability performance across different cytokines and treatments
which highlights the complex and heterogenous immune response of different individ-
uals. Despite the challenging nature of this task and the possible influence of other
regulatory pathways, external factors, or immune modulators not considered in this
study, the results still demonstrate potential for predictability. This is particularly
evident in the cases of IL-1RA Pr LPS and TNF𝛼 NT, TNF𝛼 Pr LPS, and IL-10 Ca LPS
when oversampling was applied. The improvements in performance enabled by the
oversampling of the data in many cases, also indicate the need for more samples for
the training of models and suggest that data imbalance might influence predictions,
with oversampling algorithms being a promising strategy for overcoming said obstacle.
Furthermore, RF and XGB were the most effective algorithms across proteins and treat-
ments, consistently outperforming others, potentially due the non-linear relationships
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present in the data better captured by these complex algorithms. It is also interesting to
explore why the response to LPS (whether in priming or challenge conditions) seems
to be more predictive rather than non-treated or priming with C. albicans treatment.
This effect might be due to the nature of LPS as a potent activator of the innate im-
mune system. LPS robustly triggers inflammatory pathways, leading to a heightened
cytokine response [187]. Perhaps, this response is both more intense and involved
in AD specific pathways than the one elicited by C. albicans or the one reflected in
homeostasis-regulated non-treated conditions, making them less predictive in this
context. Additional studies could aid in clarifying how the distinct immune responses
elicited by these pathogens are involved in AD mechanisms and pathways. One way
to explore that could be through comparative transcriptomic or proteomic analyses,
focusing on the signalling pathways activated by LPS and C. albicans in immune cells
from AD patients and HCs, to determine whether and which inflammatory responses
are specifically linked to AD pathology.

Attempting to explore the problem further and solve it as a classification problem by
converting the targets to categorical variables, did not lead to significant improvement
in performance. This conversion resulted in many targets having insufficient instances
in each class, limiting the ability to effectively build classifiers. Even so, results
across the cytokines and respective treatments which were classifiable, generally show
moderate to low classification accuracy and F1 scores, with a mild improvement
in most cases, when data was oversampled, as happened in regression. DT, RF
and SVC were consistently among the top-performing algorithms, reinforcing that
algorithms that capture more intricate non-linear relationships are better equipped
for handling the dataset’s complexities. Overall, cytokines like IL-10 and IL-1RA
demonstrate relatively higher classification potential compared to others, especially
after oversampling. Particularly, models for IL-10 LPS LPS and IL-1𝛽 NT showed
best performance, suggesting a good starting point for the modelling of inflammatory
response to infections in aging processes and in AD context.

In conclusion, our cytokine models, both in regression and classification, did not
yield particularly high performance metrics which highlights the challenging nature of
this task. Nevertheless, given that this approach to studying inflammatory pathways
and responses to infectious burden in both healthy and diseased individuals, through
the application of ML models, has not yet been explored extensively in the literature, it
presents a promising and innovative avenue for future research.
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7.2 Modelling Alzheimer’s Disease

7.2.1 Identifying a Different Cytokine Profile in Primed and/or Challenged
Cell Inflammatory Response in Predicting AD

In order to identify a cytokine profile in primed or challenged cell-response for AD
patients, the results of the models predicting AD from TI data are analysed. Both
of the top-performing models, median-filled logistic regression with EN penalty and
mean-filled logistic regression with L1 penalty, achieved strong predictive performance
on the test set, recalling every instance of the AD class. The high AUCs of 0.88 and 0.81,
respectively, also suggest that these models offer a reliable framework for differentiating
between AD patients and HCs, as models in recognized literature for this field usually
present similar AUC values [144, 151, 153]. These metrics allow the conclusion that
the models perform well, giving good results and thus allow for insights into the
decision-making process, permitted by SHAP.

The SHAP analysis provides critical insights into the cytokine profiles that signifi-
cantly influence the predictions of the models. In the two models, IL-10 LPS LPS, IL-1𝛽
Pr LPS, TNF𝛼 Pr LPS, and IL-6 Pr LPS are consistently identified as top predictors for
AD. Notably, IL-10 LPS LPS is identified as the most significant feature in both models,
where decreased levels of this anti-inflammatory cytokine correlate with predictions of
AD, as opposite to the effect of the pro-inflammatory cytokines (IL-1𝛽, IL-6 and TNF𝛼)
in Pr LPS conditions, in which lower levels lead to the prediction of the disease.

In this way, the obtained results suggest that higher values of the pro-inflammatory
cytokines after the cells have been primed with LPS are indicators of AD, with the regu-
latory cytokine, IL-1RA, having no impact in these conditions nor the anti-inflammatory
IL-10. This result ties wellwithprevious studies wherein a potentiated trained immunity
status is observed in AD, and the blood cells of patients display an amplified inflam-
matory response to a stimulus, along with increased expression of pro-inflammatory
cytokines [22]. On the other hand, the negative impact of IL-10 when cells have been
primed and challenged with LPS seems to suggest an impaired anti-inflammatory
response after successive inoculations in AD patients. In this model, it is the response
after the secondary challenge occurs, several days after the primary inoculation with
LPS, that is characteristic of AD, translated into lower levels of IL-10 expression as
compared to controls. These results are consistent with the proposed role of exacer-
bated inflammation in AD, as one study has reported patients to show a significant
decrease in IL-10 production after stimulation in peripheral blood mononuclear cells
[188] and another found AD patients to have a higher prevalence of the 𝛽 1082A allele,
linked to lower IL-10 production [189]. The fact that this effect has been picked up
in the "challenged" conditions as opposed to the "primed" conditions, indicates that
the impaired anti-inflammatory response in AD patients may become more apparent
after repeated exposure to inflammatory stimuli, rather than from the initial priming.
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This finding aligns with the idea that chronic inflammation plays a pivotal role in
the progression of AD, with patients’ immune systems becoming progressively less
capable of regulating inflammatory responses [190].

7.2.2 Evaluating Serum Cytokine Profile to Identify Differences Between
AD Patients and Controls

The best models found for the task of predicting AD from serum-circulating cytokines
were mode-filled and mean-filled SVC models with respective accuracies of 80% and
75%. Additionally, the mode-filled SVC model demonstrated superior performance
compared to the mean-filled model, achieving a higher AUC of 0.86 in contrast to 0.74,
thereby indicating enhanced overall efficacy. However, the superior recall for the AD
class, showed by the mean-filled model, identifying 80% of AD patients correctly, leads
us to the consideration and interpretation of both models. Although, not achieving
the metrics yielded by the models trained on TI data, the performance yielded in this
task is still significant as the models were built on a larger dataset, making for arguably
more robust results. Furthermore, while there are other studies which achieve higher
accuracies on serum data for the prediction of AD [8–10], the presented models still
perform comparatively well, with the AUCs of our models (of 0.74 and 0.86), being
consistent with those reported in studies using similar datasets for AD prediction [150,
153], while making use of a different plethora of proteins.

The SHAP analysis of our predictive models unveils a complex interplay between
pro and anti-inflammatory serum cytokines in AD. Firstly, IL-18, a pro-inflammatory
cytokine, is a key factor in both models, however with varying impacts. In the mean-
filled model it is clear that reduced levels of this cytokine correlate with the prediction
of the disease, wherein the mode-filled model this relationship is more complex, with
some high level instances leading to prediction of HCs but others being linked to the
prediction of AD. This is an interesting and controversial finding as serum studies have
often found no differences in circulating IL-18 levels between AD patients and controls
[191, 192], whilst a few studies, in opposition, found AD patients to have elevated
peripheral IL-18 levels compared to HCs [77, 193].

The anti-inflammatory cytokine, IL-10, on the other hand, was found to be of
moderate importance in the mean-filled SVC but emerged as the most significant
predictor in the more accurate mode-filled classifier, with lower values considerably
pushing predictions towards AD. This in line with current research, as has been
explored in the previous section, with studies finding decreased IL-10 levels in serum
of patients with AD [188, 194], which in turn reinforces the hypothesis that impaired
anti-inflammatory responses, particularly lower IL-10 levels, play an important role in
the pathogenesis of this disease.

Interestingly, in the two models, the pro-inflammatory cytokines such as IL-6, VEGF-
A, and IL-1𝛽, consistently show moderate to strong importance. In both classifiers,
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lower levels of these cytokines contributed to the prediction of AD. This result is
coherent with existing literature in the case of VEGF-A, since low serum levels of
this protein have consistently been associated with AD [195, 196]. However, these
are intriguing findings for IL-6 and IL-1𝛽, where numerous papers have reported the
opposite relationship. Increased levels of IL-6 have consistently been found in the
serum of AD patients [60, 61, 197], with the same applying to serum levels of IL-1𝛽
[198–201]. Important questions about the intricate function of inflammation in AD
are raised by this apparent discrepancy between our serum models’ conclusions and
the body of recognized literature. It can be hypothesized that while elevated levels of
IL-6 and IL-1𝛽 are often reported in AD patients, lower serum concentrations of these
cytokines may also hold significance in certain disease states or patient subgroups.
This discrepancy could be further explored by conducting longitudinal studies that
track cytokine levels across different stages of AD progression and different age groups
or by stratifying patients based on specific clinical features, such as disease severity or
comorbidities, to uncover potential subgroups where lower cytokine levels play a more
prominent role.

A key area of divergence between the two models is the role of IL-8 and IL-1RA.
IL-8, another pro-inflammatory cytokine, appears to have a stronger impact in the
mean-filled model, where higher levels push towards prediction of AD. Although
there is a lack of research with serum levels of IL-8 in AD patients, it has been observed
that this cytokine may increase Tau phosphorylation and subsequent NFT formation
(a hallmark of AD) with IL-8 being found to be increased in the CSF of AD patients
[202]. An additional research paper found higher concentrations of serum IL-8 to be
associated withAD, but only in the presence of significant cerebrovascular disease [203].
In this way, the findings of our models reinforce the potential relevance of IL-8 as a
biomarker in AD, as captured by the models’ ability to leverage higher serum levels for
AD prediction.

Conversely, IL-1RA, whilst of only mild importance in either model, showed varying
impacts. While in the mean-filled model, the correlation of lower levels with AD
predictions is clear (and vice-versa), in the mode-filled model, it is higher levels of
IL-1RA that are most often associated with prediction of the disease, but with some
elevated instances also seemingly pushing towards the prediction of HCs. Current
research does not systematically find variations in serum levels of IL-1RA in AD patients
in comparison to controls [204], as there is only one study that reports IL-1RA serum
levels to be increased in AD [205]. This inconsistency may point to the nuanced role
that IL-1RA plays in AD, formerly analysed in Chapter 2, where its regulatory function
could be context-dependent, balancing between beneficial and detrimental outcomes
[23].

Lastly, it is important to discuss the role of sex in these models, as this variable
also consistently appears as a feature with strong impact, as female patients apparently
lead the model towards the prediction of AD. This finding is interesting, as sex is
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moderately balanced in both classes, and as there is, in fact, a higher proportion of
female healthy controls in the dataset as displayed in Figure 6.10. In this manner, the
models’ bias toward predicting AD in female subjects could reflect underlying biological
or epidemiological trends rather than sample imbalance. On this note, current research
has well documented that women are disproportionately affected by AD, in terms
of both prevalence and progression of the disease. Studies suggest that higher life
expectancy, postmenopausal hormonal changes, genetic predispositions such as the
APOE 𝜖4 allele, and variations in cognitive reserve may contribute to this increased
risk in women [206]. This proven link may be captured by the models’ reliance on sex
as a predictive feature, highlighting the need of taking sex-specific factors into account
in AD research and clinical diagnosis.

In conclusion, we have developed well performing models for the prediction of AD,
envisioning the exploration of cytokine levels as accessible serum biomarkers, as well
as shedding light into inflammatory processes behind this form of dementia, following
in line with current research trends. The larger dataset used in these models provides
a more robust foundation for these findings, however with only approximately 100
samples in total, the results still face limitations. Many studies and ML models in this
domain typically utilize datasets comprising several hundred of samples, which offers
greater statistical power and generalizability. Nevertheless, obtaining such datasets
is known for being challenging, since typically clinical samples are scarce and data
collection is resource-intensive.

Overall, the evaluation of serum cytokine profiles from the models achieved,
highlights significant differences between inflammatory markers in AD prediction.
Anti-inflammatory IL-10 and pro-inflammatory IL-18, IL-6, and IL-1𝛽 emerge as key
contributors in both models, with a clear trend indicating that lower anti-inflammatory
and dysregulated pro-inflammatory cytokines are important markers that lead to the
prediction of AD. The differences between the two models, particularly in the roles of
IL-18 and IL-1RA, reveal the need for further investigation into the specific inflamma-
tory pathways involved in this disease. Moreover, discrepancies between our model
results (particularly for the role of IL-18, IL-6, and IL-1𝛽) make for intriguing findings
and may reflect a specific stage or subtype of AD pathology, as well as variations in
population, potentially underscoring the heterogeneous nature of immune responses
in AD patients.

7.2.3 Reporting any Relationship Between IB, Cytokine Profile and AD

When predicting AD based solely on IB data, the RF classifier described in Section 6.3.1
performed with moderate success, as evidenced by its accuracy of approximately 63%
and general F1 score of 62%. Nonetheless, while demonstrating some predictive power,
particularly in its recall for AD cases, it’s far from an ideal model as the AUC value
of 0.56 underscores a limited ability to truly discriminate between AD and HC. This
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model was limited by its sample size and thus, there was insufficient data to build a
robust classifier which prevented the development of SHAP explainability plots for
deeper insights into the model. Even so, the model’s performance, which relies solely
on six features (sex and antibody levels for the five pathogens assessed), aligns with our
hypothesis of a potential relationship between certain infections and AD. In this way,
it points towards further exploration of infection-related features in the prediction of
AD with larger datasets, which could aid in uncovering more definitive relationships
between IB and disease progression.

To this effect, when the IB data was fused with TI data, the increase in features and
slight increase in sample size, allowed for the development of more robust models and
for the final model setup. The optimal model, a median-filled DT classifier, performed
comparably to models using only TI data, likewise achieving an accuracy of 87.5%, an
AUC of 0.88, and 100% recall for the AD class. SHAP explanations revealed a similar
pattern to the TI-based models, with decreased IL-10 LPS LPS and increased TNF𝛼
Pr LPS levels being major contributors to the prediction of AD. Intriguingly, as this
model relies only on a small subset of the available features to make predictions due to
its tree nature, it did not quite capture the predictive nature of other pro-inflammatory
cytokines when primed with LPS. However, it picked up on the predictive power of
IL-1𝛽 NT, where increased values of this cytokine appear to be linked to the prediction
of AD, which in opposition to our findings in serum, is in accordance with recent
studies [200, 201].

More to the point of IB relationships with AD, HSV-1/2 emerged as a feature
of strong impact in the model, with increased values of this infectious feature being
positively correlated with the prediction of AD. This finding not only aligns with
the hypothesis that HSV is linked to the development of this disease [17, 36, 40], but
also introduces the novel approach of using ML to integrate infection-related features
with immune response data, providing valuable insights into AD classification. In
addition, it opens an avenue for explaining the impact of IL-1𝛽 NT in this model, as
HSV infection can trigger increased production of this cytokine [207]. The presence of
HSV as a feature may enhance the model’s ability to detect patterns involving both this
pathogen and IL-1𝛽 production, contributing to a more comprehensive understanding
of their roles in AD and undercovering pathways that could be further explored.

7.3 Comparative Analysis of Predicting Age Group and
Predicting AD, from TI Data

Finally, we analyse the task of predicting age group from TI data and its comparison
to the feature-like models predicting AD. This comparison is fundamental because,
in our TI dataset, AD patients have a significantly higher median age than healthy
individuals. Given that inflammation also changes with age, this comparison helps
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ensure that our findings aren’t solely attributable to the age of the subjects. However,
since in our dataset this results in a high proportion of elder individuals being AD
patients and all younger patients (under the age of 65) being HCs, as illustrated in
Figure 6.2, this task also presents itself as rather challenging.

The optimal model for predicting age group performed exceptionally well, achiev-
ing perfect scores across all metrics, including 100% accuracy and an AUC of 1.00. In
contrast, the models predicting AD, while still performing strongly, recorded slightly
lower accuracies and AUC values. This disparity in performance may be partially at-
tributed to the clearer cytokine profile distinctions for age group classification, whereas
predicting AD requires the identification of more nuanced patterns associated with
immune dysregulation specific to the disease.

Despite the difference in performance, both tasks share some similarities in fea-
ture impact, with IL-10 LPS LPS being the top feature in both models. In both cases,
lower levels of anti-inflammatory IL-10, in primed and challenged with LPS conditions
predicted AD and older age, reflecting the link between reduced anti-inflammatory re-
sponses and both aging and AD. With that in mind, the behaviour of pro-inflammatory
cytokines such as IL-1𝛽, TNF𝛼, and IL-6 diverged between the tasks. In predicting AD,
these cytokines were significant in primed with LPS conditions, while in predicting
age, they were more relevant in non-treated conditions (with the exception of IL-1𝛽
Pr LPS which was impactful in both tasks), indicating potentially different immune
responses for aging versus disease. In aging, as with AD, studies show increase in
pro-inflammatory cytokine release [208], this phenomenon is not likely a coincidence,
but arguably part of the pathophysiological mechanism of AD through age-linked
dysregulation of inflammatory pathways [209]. In this regard, the difference found
by our models is both interesting and intriguing, as it opens up new grounds for
research. Particularly, it raises questions about why age is more accurately predicted
by pro-inflammatory cytokine release in NT conditions, while AD is more strongly
predicted after stimulation, in primed with LPS conditions. This distinction suggests a
divergence in how immune responses are activated in the context of aging in opposition
to AD progression, and warrants further research.

The regulatory and anti-inflammatory cytokine, IL-1RA played a limited role in AD
prediction, not really displaying any impact in optimal models, but was more complex
in age prediction, with its levels influencing predictions differently depending on the
priming conditions. IL-1RA Pr LPS (as for NT) lead to prediction of being over 65
when the feature presents lower values, however in Pr Ca conditions, higher levels
positively impact the model’s prediction of an individual belonging to the older class.
This highlights a more intricate role for inflammation regulation in aging and goes
beyond previous studies which only report an increase of IL-1RA production with age
[210, 211].

One major limitation of our work is the overlap between age and AD in the used
dataset, as all AD patients are over 65 and the majority of HCs are under this threshold.
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This makes it difficult to fully separate the effects of aging from AD. Hence, future
work should focus on including age-matched controls to better isolate the cytokine
signatures of AD and remove the confounding effect of age. Even so, our results
still show distinction in TI cytokine profile, namely they indicate a much more clear
pattern of increased pro-inflammatory cytokine levels in primed cell response, whilst
the impact of IL-10 in LPS LPS remains to be attributed to AD, age or potentially both.
Furthermore, this last task presents intriguing findings for the complex relationships
between aging and inflammation, while potentially providing a basis for more research
aimed at understanding how baseline immune activity and immune responses to
external stimuli vary and evolve with age and in the development of AD.
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Conclusion

In this study, we have explored the ability of modelling immune response to different
stimuli in AD patients and healthy individuals. For this we leveraged ML algorithms,
including linear and logistic regression with L1, L2 and EN penalties, DTs, RFs, SVMs,
KNN and XGB, recurred to oversampling for data augmentation and adopted a nested
CV approach for hyperparameter optimization. The regressors and classifiers deployed
(the latter were used when target variables were converted to categorical labels) were
trained on subjects’ age, sex, antibody levels for HSV types 1 and 2, H. pylori, CMV,
C. pneumoniae and B. burgdorferi, and AD status. With this approach, we achieved
moderately performing models for predicting TNF𝛼, IL-6, IL-10, IL-1𝛽 and IL-1RA
in various responses to stimulation with LPS and C. albicans. Regression models
were most successful for TNF𝛼 Pr LPS, IL-10 Ca LPS and IL-1RA Pr LPS, whereas
classifiers for IL-10 LPS LPS and IL-1𝛽 NT displayed the most efficacy. Our results
show the challenging nature of predicting immune response in individuals, particularly
in the context of AD, nonetheless they hint at the existence of relationships between
infectious burden, age, sex, AD and distinct inflammatory response in individuals.
Furthermore, they show promise for the application of this novel approach in order
to better understand mechanistic pathways behind inflammation and this form of
dementia.

Another fundamental part of this work was the the development of ML models for
the prediction of AD, following the same core approach. Models trained solely on IB
performed moderately well, but vast improvements were achieved when TI data was
utilized. Top performing models (trained solely on TI data and on both TI and IB data)
achieved 87.5% accuracy, an AUC of 0.88 and and 100% recall for instances of AD class,
on test set.

Through the deployment and interpretation of our models via SHAP, we found
increased levels of pro-inflammatory cytokines (TNF𝛼, IL-6 and IL-1𝛽) in Pr LPS to
lead to the prediction of AD, in line with our expectations and existent research [22].
We also found decreased levels of anti-inflammatory IL-10 in LPS LPS conditions to
be correlated with prediction of the disease, reflecting an impaired anti-inflammatory
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response in AD patients in reaction to successive infections [188, 190]. In models
trained with IB data as well, higher antibody levels for HSV and higher levels of IL-1𝛽
NT were also major contributors to AD prediction. The impact of HSV is significant as
it aligns with the infection hypothesis, fundament of our study, supporting that herpes
may play a critical role in the development of AD [40].

However, strong age correlation with AD present in our dataset, elicited compar-
ison with models trained on the same data, monocyte expressed cytokine levels in
response to stimuli, for predicting age group (under or over 65). The optimal model
found achieved perfect metric scores, correctly identifying every instance in the train
and test sets, and its interpretation shared some similarities with the AD predicting
models, namely the impact for IL-10 LPS LPS. In this way, our results reflect the link
between dysregulated inflammatory responses in both aging and AD, and highlight the
importance of thoroughly investigating how age-related changes in immune function,
particularly in cytokine regulation, might contribute to AD pathogenesis.

We also made use serum cytokine data (which encompassed a larger portion of the
dataset and various pro-inflammatory and anti-inflammatory cytokines) in order to
build predictive models for AD and find potential biomarkers. The optimal models
in this task achieved accuracies of 75% and 80% with AUC scores of 0.74 and 0.86,
respectively. SHAP explanations revealed lower levels of IL-10 to be consistently linked
to AD, reinforcing its role in impaired anti-inflammatory responses [188, 194]. VEGF-A,
IL-6, and IL-1𝛽 also contributed, although lower levels predicted AD, which contrasts
with existing literature for the latter two proteins [60, 197, 200, 201]. Some variables
showed contrasting impacts in how they influenced AD prediction, namely IL-18 and
IL-1RA suggesting nuanced roles of these cytokines in the pathology of this disease.
Overall, these models underscore the importance of inflammatory processes in AD
and the need for further investigation into the roles these cytokines play in disease
progression, while the discrepancies found suggest potential stage or subtype-specific
immune responses in AD which require further exploration.

Main limitations of the presentwork lie in sample size (as ML require vastamounts of
data for better performance and generalizability) and confounding effect of age, namely
in models predicting AD from TI data. Future research should include validation
of our findings on larger datasets, including age-matched controls for discarding the
confounding effects of natural aging processes. Further research could also extend
to MCI patients in order to better illustrate disease progression, and explore other
potential biomarkers or infectious agents reportedly linked to AD, such as SARS-CoV-2
[212].
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Annex 1

I.1 Predicting TI Cytokine Levels (Regression) - Extensive
Results

Table I.1: LOOCV results for predicting TNF𝛼 NT. Best results (models with Pearson’s
correlation coefficient over 0.3) are highlighted in green.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 8.65 9.06 5.93 -0.238

Lasso
Regression 6.87 7.89 5.09 -0.467

Ridge
Regression 7.25 7.89 5.12 -0.456

EN
Regression 6.95 7.85 5.13 -0.469

DT 6.22 8.21 6.97 0.169
RF 7.64 8.05 5.18 -0.106
SVC 5.23 7.28 6.91 -0.622
KNN 7.63 8.81 5.48 -0.572

Original
data 32

XGB 6.01 6.87 6 0.156
Linear
Regression 7.610 8.820 5.738 -0.030

Lasso
Regression 7.204 8.126 4.525 0.067

Ridge
Regression 7.528 8.203 4.494 0.032

EN
Regression 7.432 8.356 4.587 -0.062

DT 5.756 7.853 6.971 0.341
RF 5.299 7.047 4.547 0.465
SVC 8.970 9.379 4.757 0.034
KNN 7.230 7.821 4.223 0.391

TNF𝛼
NT 0.65 - 27.93

Oversampled
data 50

XGB 5.792 6.280 4.599 0.509
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Table I.2: LOOCV results for predicting TNF𝛼 Pr LPS. Best results (models with
Pearson’s correlation coefficient over 0.3) are highlighted in green.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 635.68 735.08 477.60 -0.054

Lasso
Regression 527.75 584.53 356.58 0.220

Ridge
Regression 555.55 561.77 372.69 0.251

EN
Regression 517.03 568.42 357.64 0.245

DT 663.32 698.02 566.39 -0.078
RF 593.29 631.95 401.75 -0.062
SVC 354.53 472.57 426.35 0.490
KNN 461.12 541.97 417.24 0.220

Original
data 26

XGB 595.39 626.87 419.95 -0.197
Linear
Regression 601.051 612.179 384.221 0.276

Lasso
Regression 558.073 565.385 323.425 0.394

Ridge
Regression 506.609 553.707 356.425 0.384

EN
Regression 559.262 562.384 341.597 0.376

DT 446.970 539.935 372.489 0.402
RF 499.975 527.603 323.645 0.470
SVC 400.095 498.338 404.123 0.499
KNN 381.148 417.565 390.504 0.593

TNF𝛼
Pr LPS 1.75 - 2705.91

Oversampled
data 42

XGB 487.131 562.824 368.308 0.388

Table I.3: LOOCV results for predicting TNF𝛼 Pr Ca. Oversampling via SMOGN was
not possible.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 9.114 9.757 5.477 -0.077

Lasso
Regression 7.984 7.862 4.799 -0.210

Ridge
Regression 6.965 7.573 4.574 -0.710

EN
Regression 6.965 7.559 4.557 -0.684

DT 10.451 10.557 7.045 -0.536
RF 8.533 8.706 5.223 -0.467
SVC 6.793 8.242 5.687 -0.556
KNN 8.865 8.689 5.338 -0.416

TNF𝛼

Pr Ca
1.75 - 30.00 Original

data 27

XGB 8.384 9.393 6.828 -0.430
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I .1 . PREDICTING TI CYTOKINE LEVELS (REGRESSION) - EXTENSIVE
RESULTS

Table I.4: LOOCV results for predicting TNF𝛼 Ca LPS. Oversampling via SMOGN was
not possible.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 226.070 265.911 171.354 -0.494

Lasso
Regression 129.311 143.507 112.000 -0.653

Ridge
Regression 162.687 145.182 98.127 -0.477

EN
Regression 146.639 162.826 121.553 -0.516

DT 144.307 167.361 108.539 -0.519
RF 127.756 135.875 109.868 -0.612
SVC 87.085 118.937 108.611 -0.312
KNN 119.076 129.564 103.262 -0.606

TNF𝛼

Ca LPS
92.12 - 556.73 Original

data 16

XGB 118.169 152.076 134.481 -0.447

Table I.5: LOOCV results for predicting TNF𝛼 LPS LPS.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 118.13 168.29 171.8 -0.263

Lasso
Regression 127.85 149.43 127.32 -0.408

Ridge
Regression 103.29 138.16 132.81 -0.129

EN
Regression 103.66 138.74 132.57 -0.148

DT 176.22 198.19 165.11 -0.39
RF 129.46 162.21 135.96 -0.342
SVC 87.57 127.38 150.05 -0.531
KNN 103.56 149.19 134.04 -0.326

Original
data 34

XGB 89.6 147.2 157.04 -0.002
Linear
Regression 111.194 153.783 136.146 -0.071

Lasso
Regression 120.064 152.542 126.316 -0.251

Ridge
Regression 127.667 154.586 123.999 -0.264

EN
Regression 118.498 153.453 122.742 -0.273

DT 114.771 148.773 117.245 0.185
RF 118.964 144.472 118.130 0.154
SVC 135.381 153.644 115.826 -0.024
KNN 95.899 138.735 125.749 0.129

TNF𝛼
LPS LPS 44.5 - 741.82

Oversampled
data 51

XGB 118.899 142.195 113.989 0.122
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Table I.6: LOOCV results for predicting IL-6 NT. Best results are highlighted in green.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 1.620 2.753 3.121 -0.390

Lasso
Regression 1.007 1.464 2.266 -0.988

Ridge
Regression 1.009 1.458 2.265 -0.982

EN
Regression 1.009 1.457 2.264 -0.982

DT 1.024 1.805 2.439 -0.174
RF 1.209 1.992 2.603 -0.340
SVC 1.064 1.584 2.214 -0.259
KNN 1.005 1.673 2.228 -0.314

Original
data 28

XGB 0.786 1.464 2.384 -0.215
Linear
Regression 102.306 114.343 82.445 -0.292

Lasso
Regression 65.805 90.188 77.412 0.102

Ridge
Regression 64.443 89.409 77.339 0.126

EN
Regression 63.850 88.972 77.802 0.124

DT 55.887 85.374 83.379 0.215
RF 61.976 85.667 74.293 0.320
SVC 63.228 88.800 79.752 0.053
KNN 86.062 104.097 84.105 -0.205

IL-6

NT
2.51 - 461.71

Oversampled
data 42

XGB 78.635 88.206 79.977 0.120

Table I.7: LOOCV results for predicting IL-6 Pr LPS. Best results are highlighted in
green.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 648.76 919.42 606.57 -0.004

Lasso
Regression 525.20 632.48 383.71 0.162

Ridge
Regression 508.42 569.12 412.49 0.188

EN
Regression 530.61 611.93 386.67 0.163

DT 395.83 565.32 515.00 0.198
RF 520.27 530.42 410.05 0.316
SVC 541.51 619.64 457.34 -0.160
KNN 409.91 587.18 476.08 -0.023

Original
data 19

XGB 574.06 642.20 438.10 -0.288
Linear
Regression 579.981 690.337 468.385 0.235

Lasso
Regression 556.362 619.662 372.411 0.233

Ridge
Regression 552.323 647.175 387.805 0.130

EN
Regression 574.427 561.996 385.963 0.309

DT 503.159 582.317 440.738 0.252
RF 445.829 516.217 386.301 0.436
SVC 579.538 554.884 344.372 0.413
KNN 457.781 511.057 428.634 0.384

IL-6

Pr LPS
76.04 - 2739.48

Oversampled
data 28

XGB 474.427 604.114 467.628 0.154
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Table I.8: LOOCV results for predicting IL-6 Pr Ca. Oversampling via SMOGN was
not possible.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 72.461 72.442 45.927 -0.354

Lasso
Regression 43.250 52.241 35.879 0.019

Ridge
Regression 43.016 51.097 32.934 0.164

EN
Regression 43.120 51.000 32.823 0.170

DT 59.705 66.516 44.567 -0.163
RF 54.303 58.714 33.088 -0.239
SVC 64.842 65.893 40.384 -0.365
KNN 47.866 54.654 36.944 -0.071

IL-6

Pr Ca
5.02 - 250.31 Original

data 27

XGB 40.706 51.479 45.787 0.043

Table I.9: LOOCV results for predicting IL-6 Ca LPS. Oversampling via SMOGN was
not possible.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 297.691 356.216 252.109 -0.3434

Lasso
Regression 169.701 177.850 148.305 -0.6828

Ridge
Regression 166.885 178.742 132.182 -0.6265

EN
Regression 164.044 177.774 162.845 -0.8623

DT 177.987 209.170 135.405 -0.2923
RF 148.900 161.069 129.644 -0.8481
SVC 91.434 150.937 134.869 -0.3471
KNN 139.553 166.644 129.202 -0.4486

IL-6

Ca LPS
36.93 - 640.01 Original

data 13

XGB 138.322 152.532 116.867 -0.5566

I.2 Predicting TI Cytokine Levels (Classification) - Extensive
Results

Table I.24: LOOCV results for predicting TNF𝛼 Pr LPS through classification. Best
results are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 23.08% 22.22% 23.33% 22.17%

Logistic
Lasso 19.23% 19.44% 20.83% 20.10%

Logistic
Ridge 26.92% 27.78% 26.67% 26.95%

Logistic
EN 11.54% 13.89% 12.50% 13.10%

DT 42.31% 42.80% 43.33% 42.94%
RF 26.92% 27.04% 27.50% 26.88%
SVC 7.69% 11.43% 8.33% 9.57%
KNN 26.92% 24.44% 29.17% 26.58%

Original
data 26

XGB 11.54% 14.29% 12.50% 13.33%
Logistic
Regression 30.8% 27.9% 32.5% 28.9%

Logistic
Lasso 34.6% 25.4% 37.5% 29.9%

Logistic
Ridge 34.6% 28.5% 37.5% 32.4%

Logistic
EN 38.5% 28.7% 41.7% 33.9%

DT 34.6% 34.2% 36.7% 35.2%
RF 38.5% 30.0% 41.7% 34.8%
SVC 26.9% 25.0% 29.2% 26.9%
KNN 42.3% 31.3% 45.8% 37.0%

TNF𝛼

Pr LPS

Oversampled
data 30

XGB 38.5% 29.0% 41.7% 34.2%
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Table I.10: LOOCV results for predicting IL-6 LPS LPS. Best results are highlighted in
green.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 88.88 99.86 56.95 0.338

Lasso
Regression 89.85 109.34 74.14 -0.043

Ridge
Regression 91.68 108.57 75.47 0.001

EN
Regression 91.92 108.45 75.22 -0.063

DT 114.2 120.05 104.97 -0.151
RF 80.41 96.79 75.87 -0.207
SVC 57.01 86.42 84.09 -0.122
KNN 80.69 93.71 78.79 -0.069

Original
data 29

XGB 90.29 103.95 91.94 -0.208
Linear
Regression 82.693 90.457 54.319 0.363

Lasso
Regression 70.663 87.604 61.340 0.296

Ridge
Regression 78.195 88.117 68.236 0.194

EN
Regression 79.650 90.919 60.681 0.270

DT 50.898 81.674 72.770 0.359
RF 71.456 85.738 62.148 0.365
SVC 92.606 88.582 67.892 0.306
KNN 92.024 96.842 68.274 0.263

IL-6

LPS LPS
16.17 - 498.24

Oversampled
data 45

XGB 83.779 92.098 66.233 0.178

Table I.11: LOOCV results for predicting IL-10 NT.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 116.084 121.946 87.367 -0.198

Lasso
Regression 68.221 91.143 82.143 -0.068

Ridge
Regression 60.640 88.860 81.438 0.012

EN
Regression 59.881 89.320 82.488 -0.029

DT 70.230 106.372 92.819 0.038
RF 69.071 103.386 83.317 -0.270
SVC 41.822 80.889 100.943 -0.061
KNN 68.756 97.998 90.973 -0.345

Original
data 22

XGB 48.843 86.885 105.034 -0.176
Linear
Regression 0.9508 1.6916 2.2052 -0.1235

Lasso
Regression 1.1555 1.4602 2.1696 -0.3292

Ridge
Regression 1.0420 1.5052 2.0818 -1.0000

EN
Regression 1.0420 1.5052 2.0818 -1.0000

DT 0.7699 1.5468 2.2542 0.0673
RF 0.8847 1.4858 2.0239 0.0572
SVC 0.8739 1.4355 2.0954 0.0571
KNN 1.4489 1.7643 2.0091 -0.1238

IL-10

NT
0.10 - 12.15

Oversampled
data 36

XGB 0.9679 1.4392 2.0879 -0.4160
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Table I.12: LOOCV results for predicting IL-10 Pr LPS. Oversampling via SMOGN was
not possible.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 38.116 44.544 30.325 -0.4472

Lasso
Regression 22.576 23.642 10.575 -0.1254

Ridge
Regression 27.410 25.332 10.723 -0.5153

EN
Regression 27.410 25.377 10.864 -0.5246

DT 37.337 31.209 16.907 -0.3206
RF 23.305 25.285 12.092 -0.4956
SVC 21.517 23.832 14.628 -0.6499
KNN 27.751 26.482 11.219 -0.5323

IL-10

Pr LPS
0.98 - 68.47 Original

data 16

XGB 26.943 24.892 12.702 -0.5958

Table I.13: LOOCV results for predicting IL-10 Pr Ca. Best results are highlighted in
green.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 1.111 1.539 1.319 -0.178

Lasso
Regression 0.882 1.036 0.929 -0.406

Ridge
Regression 0.857 1.031 0.923 -0.361

EN
Regression 0.853 1.019 0.927 -0.331

DT 0.789 1.314 1.287 -0.050
RF 0.779 0.997 1.050 -0.350
SVC 0.698 0.917 0.934 0.173
KNN 0.559 0.988 1.101 -0.371

Original
data 22

XGB 0.659 1.010 0.989 0.136
Linear
Regression 0.9292 1.1712 1.0085 -0.0764

Lasso
Regression 0.9757 1.0960 0.9818 -0.0428

Ridge
Regression 1.0371 1.1029 1.0190 -0.0804

EN
Regression 1.0008 1.0845 0.9670 -0.0112

DT 0.7012 0.8993 0.8162 0.3592
RF 0.7626 0.9222 0.8425 0.3006
SVC 1.2058 1.2249 0.9562 -0.0724
KNN 0.4875 0.9012 0.9282 0.3024

IL-10

Pr Ca
0 - 6.05

Oversampled
data 36

XGB 0.6678 0.9222 0.8878 0.2337
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Table I.14: LOOCV results for predicting IL-10 Ca LPS. Best results are highlighted in
green.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 4.582 5.042 3.203 -0.037

Lasso
Regression 2.692 3.332 2.390 -0.051

Ridge
Regression 1.999 2.742 2.644 -0.086

EN
Regression 1.864 2.611 2.693 0.012

DT 1.784 2.936 2.611 0.306
RF 1.695 2.748 2.660 0.045
SVC 2.085 2.962 2.990 -0.111
KNN 1.425 2.541 2.680 0.186

Original
data 16

XGB 0.766 2.383 3.017 0.210
Linear
Regression 5.835 5.293 2.740 0.310

Lasso
Regression 2.140 2.874 1.949 0.483

Ridge
Regression 4.002 3.884 2.556 0.342

EN
Regression 2.804 3.164 2.088 0.449

DT 1.895 2.330 2.133 0.632
RF 2.133 2.413 2.117 0.657
SVC 3.703 3.844 2.522 0.264
KNN 1.417 2.370 2.668 0.567

IL-10

Ca LPS
0.32 - 13.64

Oversampled
data 28

XGB 1.815 2.481 2.140 0.612

Table I.15: LOOCV results for predicting IL-10 LPS LPS. Best results are highlighted in
green. Oversampling via SMOGN was not possible.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 6.24 6.44 2.87 -0.066

Lasso
Regression 4.8 4.39 2.16 0.175

Ridge
Regression 4.56 4.55 2.7 -0.308

EN
Regression 4.39 4.44 2.47 -0.177

DT 4.05 4.97 3.2 -0.149
RF 4.22 4.46 2.23 -0.039
SVC 4.08 4.84 2.88 -0.438
KNN 4.05 3.69 2.44 0.331

IL-10

LPS LPS
0.67 - 11.71 Original

data 20

XGB 5.08 5.07 3.29 -0.075
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Table I.16: LOOCV results for predicting IL-1𝛽 NT. Best results are highlighted in
green.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 5.986 7.307 6.465 -0.218

Lasso
Regression 4.570 5.547 5.675 0.054

Ridge
Regression 4.449 5.488 5.689 0.063

EN
Regression 4.422 5.476 5.693 0.071

DT 4.338 6.571 6.168 0.063
RF 4.645 6.026 5.946 -0.180
SVC 2.694 5.409 6.983 -0.456
KNN 5.129 6.316 6.159 -0.042

Original
data 32

XGB 2.283 5.874 7.272 -0.139
Linear
Regression 6.719 6.682 5.847 -0.117

Lasso
Regression 4.832 5.732 5.387 0.140

Ridge
Regression 4.802 5.688 5.364 0.163

EN
Regression 4.815 5.676 5.367 0.164

DT 4.783 6.309 5.345 0.172
RF 3.814 5.229 5.086 0.400
SVC 4.750 5.803 5.417 0.158
KNN 5.629 6.477 5.690 0.051

IL-1𝛽

NT
0.25 - 35.43

Oversampled
data 51

XGB 4.090 5.421 5.366 0.253

Table I.17: LOOCV results for predicting IL-1𝛽 Pr LPS. Best results are highlighted in
green.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 5.689 6.912 5.974 0.156

Lasso
Regression 3.876 5.659 5.563 0.295

Ridge
Regression 3.289 5.364 5.562 0.345

EN
Regression 3.469 5.501 5.545 0.322

DT 3.721 6.384 6.716 0.214
RF 4.447 6.115 5.795 0.126
SVC 3.823 5.370 5.665 0.325
KNN 4.304 5.944 5.995 0.187

Original
data 32

XGB 4.249 6.691 7.016 0.007
Linear
Regression 5.036 6.383 5.173 0.333

Lasso
Regression 3.690 6.048 5.280 0.319

Ridge
Regression 3.746 5.802 5.007 0.411

EN
Regression 3.803 5.898 5.112 0.375

DT 4.303 5.687 5.470 0.408
RF 4.197 5.547 4.892 0.451
SVC 4.002 6.281 4.920 0.373
KNN 4.271 5.912 5.639 0.296

IL-1𝛽

Pr LPS
0.90 - 34.61

Oversampled
data 51

XGB 6.176 6.016 4.707 0.423
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Table I.18: LOOCV results for predicting IL-1𝛽 Pr Ca. Best results are highlighted in
green.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 3.485 4.261 3.876 -0.107

Lasso
Regression 2.599 3.149 3.143 0.196

Ridge
Regression 2.568 3.120 3.146 0.210

EN
Regression 2.498 3.096 3.162 0.213

DT 3.252 3.702 3.378 0.126
RF 3.215 3.651 3.449 -0.117
SVC 2.790 3.556 3.503 -0.125
KNN 2.615 3.343 3.278 0.105

Original
data 32

XGB 2.011 3.345 4.176 0.109
Linear
Regression 3.438 3.674 3.323 0.113

Lasso
Regression 2.500 3.253 3.035 0.256

Ridge
Regression 2.448 3.243 3.029 0.260

EN
Regression 2.457 3.238 3.026 0.263

DT 2.362 3.275 3.327 0.290
RF 2.286 2.827 2.843 0.474
SVC 2.910 3.552 2.758 0.265
KNN 2.761 3.198 2.932 0.333

IL-1𝛽

Pr Ca
0.42 - 24.12

Oversampled
data 54

XGB 2.962 3.372 3.147 0.193

Table I.19: LOOCV results for predicting IL-1RA NT. Best results are highlighted in
green. Oversampling via SMOGN was not possible.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 1754.201 1619.610 1126.908 -0.669

Lasso
Regression 1024.752 1143.689 802.774 -0.993

Ridge
Regression 1063.517 1180.766 824.766 -0.900

EN
Regression 1048.523 1171.517 817.439 -0.931

DT 954.298 1456.023 1046.716 0.122
RF 1239.353 1278.665 885.787 -0.327
SVC 1019.006 1105.108 806.398 -0.347
KNN 983.123 1147.909 948.943 0.046

IL-1RA

NT
1095.66 - 6293.75 Original

data 29

XGB 1075.939 1186.211 702.391 0.313
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Table I.20: LOOCV results for predicting IL-1RA Pr LPS. Best results are highlighted
in green. Oversampling via SMOGN was not possible.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 1132.246 1291.767 834.213 -0.315

Lasso
Regression 1051.477 1097.747 863.824 -0.571

Ridge
Regression 1166.393 1082.069 781.527 -0.345

EN
Regression 1093.629 1057.416 792.259 -0.414

DT 1050.779 1226.796 849.503 0.071
RF 882.237 992.138 786.357 0.116
SVC 762.788 952.740 787.156 -0.675
KNN 881.976 1078.148 787.296 -0.110

IL-1RA

Pr LPS
2013.46 - 6365.57 Original

data 29

XGB 488.807 764.151 667.981 0.573

Table I.21: LOOCV results for predicting IL-1RA Pr Ca. Oversampling via SMOGN
was not possible.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 1490.768 1578.273 1190.021 -0.583

Lasso
Regression 1056.634 1180.267 768.745 -0.748

Ridge
Regression 1190.101 1256.343 722.669 -0.393

EN
Regression 1110.247 1209.580 740.364 -0.634

DT 1399.137 1604.703 1131.916 -0.021
RF 1516.146 1395.430 801.603 -0.489
SVC 992.084 1297.438 805.311 -0.731
KNN 662.050 1041.820 1002.278 0.096

IL-1RA

Pr LPS
1066.64 - 5947.04 Original

data 29

XGB 1142.263 1274.336 838.113 0.197

Table I.22: LOOCV results for predicting IL-1RA Ca LPS. Oversampling via SMOGN
was not possible.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 1768.325 1780.153 1089.770 -0.334

Lasso
Regression 919.432 1114.834 759.477 -0.830

Ridge
Regression 1347.913 1254.559 750.005 -0.507

EN
Regression 1300.228 1216.615 745.775 -0.492

DT 1243.899 1519.255 1011.073 -0.338
RF 1248.145 1226.016 737.501 -0.686
SVC 770.175 1075.270 809.204 -0.756
KNN 1100.696 1135.757 747.961 -0.666

IL-1RA

Ca LPS
984.26 - 5406.42 Original

data 17

XGB 1619.831 1453.425 992.146 -0.355
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Table I.23: LOOCV results for predicting IL-1RA LPS LPS. Best results are highlighted
in green. Oversampling via SMOGN was not possible.

Range Data
utilized

Sample
Size Model Median

absolute error
Mean

absolute error
Standard
Deviation

Pearson’s
coefficient

Linear
Regression 777.045 810.859 593.764 0.376

Lasso
Regression 777.973 849.390 556.958 0.206

Ridge
Regression 973.505 902.822 592.555 0.139

EN
Regression 790.698 871.784 618.618 0.142

DT 1142.707 1150.310 683.731 -0.035
RF 812.266 859.287 527.055 0.216
SVC 756.525 949.103 536.076 -0.436
KNN 703.342 793.184 546.157 0.300

IL-1RA

LPS LPS
987.22 - 4996.25 Original

data 30

XGB 710.654 878.008 684.186 0.200

Table I.25: LOOCV results for predicting TNF𝛼 LPS LPS through classification. Best
results are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 12.90% 12.59% 12.73% 12.64%

Logistic
Lasso 3.23% 3.03% 3.03% 3.03%

Logistic
Ridge 6.45% 6.11% 6.36% 6.23%

Logistic
EN 3.23% 2.38% 3.03% 2.67%

DT 48.39% 51.59% 48.48% 48.82%
RF 19.35% 17.14% 19.09% 18.00%
SVC 12.90% 11.43% 12.73% 11.90%
KNN 35.48% 35.48% 35.76% 35.35%

Original
data 31

XGB 6.45% 6.55% 6.36% 6.37%
Logistic
Regression 16.1% 16.1% 16.1% 16.0%

Logistic
Lasso 9.7% 8.1% 10.0% 8.9%

Logistic
Ridge 16.1% 16.3% 16.1% 16.1%

Logistic
EN 9.7% 8.5% 10.0% 9.1%

DT 48.4% 49.0% 48.8% 48.4%
RF 22.6% 18.6% 22.7% 20.2%
SVC 16.1% 16.5% 16.4% 16.4%
KNN 32.3% 29.1% 33.0% 30.6%

TNF𝛼

LPS LPS

Oversampled
data 33

XGB 9.7% 8.6% 10.0% 9.2%
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Table I.26: LOOCV results for predicting IL-6 Pr LPS through classification. Best results
are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 36.84% 37.78% 36.51% 36.74%

Logistic
Lasso 31.58% 32.54% 32.54% 32.54%

Logistic
Ridge 36.84% 38.33% 37.30% 37.68%

Logistic
EN 31.58% 32.38% 32.54% 32.27%

DT 42.11% 29.17% 44.44% 35.12%
RF 21.05% 21.43% 21.43% 21.43%
SVC 26.32% 23.33% 27.78% 25.11%
KNN 47.37% 43.45% 49.21% 45.25%

Original
data 19

XGB 36.84% 38.33% 37.30% 37.68%
Logistic
Regression 31.6% 32.8% 31.7% 32.1%

Logistic
Lasso 36.8% 32.4% 38.1% 34.0%

Logistic
Ridge 47.4% 45.3% 48.4% 46.2%

Logistic
EN 36.8% 35.6% 38.1% 36.3%

DT 26.3% 20.6% 27.8% 23.6%
RF 36.8% 35.1% 38.1% 35.7%
SVC 47.4% 43.5% 49.2% 44.9%
KNN 57.9% 38.5% 61.1% 47.2%

IL-6

Pr LPS

Oversampled
data 21

XGB 36.8% 35.6% 38.1% 36.3%
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Table I.27: LOOCV results for predicting IL-6 Ca LPS through classification. Best results
are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 36.84% 37.78% 36.51% 36.74%

Logistic
Lasso 31.58% 32.54% 32.54% 32.54%

Logistic
Ridge 36.84% 38.33% 37.30% 37.68%

Logistic
EN 31.58% 32.38% 32.54% 32.27%

DT 42.11% 29.17% 44.44% 35.12%
RF 21.05% 21.43% 21.43% 21.43%
SVC 26.32% 23.33% 27.78% 25.11%
KNN 47.37% 43.45% 49.21% 45.25%

Original
data 31

XGB 36.84% 38.33% 37.30% 37.68%
Logistic
Regression 31.6% 32.8% 31.7% 32.1%

Logistic
Lasso 36.8% 32.4% 38.1% 34.0%

Logistic
Ridge 47.4% 45.3% 48.4% 46.2%

Logistic
EN 36.8% 35.6% 38.1% 36.3%

DT 26.3% 20.6% 27.8% 23.6%
RF 36.8% 35.1% 38.1% 35.7%
SVC 47.4% 43.5% 49.2% 44.9%
KNN 57.9% 38.5% 61.1% 47.2%

IL-6

Ca LPS

Oversampled
data 33

XGB 36.8% 35.6% 38.1% 36.3%
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Table I.28: LOOCV results for predicting IL-6 LPS LPS through classification. Best
results are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 42.31% 43.49% 43.49% 43.49%

Logistic
Lasso 46.15% 48.89% 47.20% 47.88%

Logistic
Ridge 46.15% 46.30% 47.20% 46.63%

Logistic
EN 42.31% 45.45% 43.86% 44.37%

DT 30.77% 32.85% 30.63% 31.02%
RF 23.08% 22.22% 22.91% 22.12%
SVC 23.08% 19.44% 25.40% 22.02%
KNN 26.92% 19.81% 29.10% 23.33%

Original
data 26

XGB 42.31% 42.59% 43.86% 43.12%
Logistic
Regression 50.0% 50.5% 52.0% 51.1%

Logistic
Lasso 46.2% 46.3% 47.2% 46.4%

Logistic
Ridge 50.0% 50.9% 52.0% 50.8%

Logistic
EN 50.0% 50.9% 52.0% 50.8%

DT 30.8% 28.5% 30.3% 29.1%
RF 50.0% 51.7% 49.5% 49.9%
SVC 38.5% 40.6% 40.2% 40.2%
KNN 42.3% 60.4% 45.7% 38.6%

IL-6

LPS LPS

Oversampled
data 30

XGB 46.2% 46.7% 48.6% 46.3%
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Table I.29: LOOCV results for predicting IL-10 Pr LPS through classification. Best
results are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 31.25% 30.56% 30.00% 30.13%

Logistic
Lasso 18.75% 13.33% 18.89% 14.95%

Logistic
Ridge 18.75% 9.09% 16.67% 11.76%

Logistic
EN 6.25% 3.33% 6.67% 4.44%

DT 50.00% 49.29% 50.00% 49.46%
RF 37.50% 34.29% 36.67% 35.38%
SVC 6.25% 4.17% 5.56% 4.76%
KNN 6.25% 5.56% 5.56% 5.56%

Original
data 16

XGB 12.50% 20.83% 12.22% 14.29%
Logistic
Regression 31.3% 33.3% 31.1% 31.5%

Logistic
Lasso 25.0% 25.0% 25.6% 24.8%

Logistic
Ridge 18.8% 18.9% 18.9% 18.8%

Logistic
EN 18.8% 19.4% 18.9% 18.8%

DT 56.3% 58.3% 55.6% 56.1%
RF 56.3% 56.7% 56.7% 56.7%
SVC 25.0% 24.4% 25.6% 24.8%
KNN 31.3% 31.2% 32.2% 31.1%

IL-10

Pr LPS

Oversampled
data 18

XGB 31.3% 35.2% 32.2% 31.7%
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Table I.30: LOOCV results for predicting IL-10 LPS LPS through classification. Best
results are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 52.94% 56.48% 52.38% 53.33%

Logistic
Lasso 52.94% 52.38% 49.60% 49.40%

Logistic
Ridge 29.41% 26.92% 24.60% 21.67%

Logistic
EN 35.29% 32.78% 32.94% 31.88%

DT 41.18% 39.29% 39.29% 39.29%
RF 35.29% 26.67% 30.16% 27.81%
SVC 47.06% 47.62% 50.40% 46.90%
KNN 52.94% 55.56% 55.16% 52.59%

Original
data 17

XGB 35.29% 34.34% 32.94% 31.75%
Logistic
Regression 58.8% 61.7% 60.7% 60.0%

Logistic
Lasso 52.9% 55.6% 55.2% 52.6%

Logistic
Ridge 47.1% 48.1% 49.6% 45.0%

Logistic
EN 47.1% 48.1% 49.6% 45.0%

DT 47.1% 47.6% 50.4% 46.9%
RF 47.1% 48.1% 54.0% 46.0%
SVC 58.8% 61.7% 64.3% 58.6%
KNN 52.9% 55.6% 59.5% 52.2%

IL-10

LPS LPS

Oversampled
data 21

XGB 52.9% 55.6% 55.2% 52.6%
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Table I.31: LOOCV results for predicting IL-1𝛽 NT through classification. Best results
are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 31.03% 17.65% 16.67% 17.14%

Logistic
Lasso 62.07% 20.69% 33.33% 25.53%

Logistic
Ridge 62.07% 20.69% 33.33% 25.53%

Logistic
EN 62.07% 20.69% 33.33% 25.53%

DT 48.28% 34.66% 34.66% 34.66%
RF 55.17% 19.75% 29.63% 23.70%
SVC 44.83% 18.06% 24.07% 20.63%
KNN 48.28% 18.67% 25.93% 21.71%

Original
data 29

XGB 62.07% 20.69% 33.33% 25.53%
Logistic
Regression 31.0% 32.7% 41.9% 31.9%

Logistic
Lasso 31.0% 32.7% 41.9% 31.9%

Logistic
Ridge 31.0% 33.3% 41.9% 32.7%

Logistic
EN 31.0% 33.3% 41.9% 32.7%

DT 51.7% 52.2% 56.0% 52.7%
RF 65.5% 59.5% 66.3% 61.0%
SVC 44.8% 43.4% 49.3% 42.9%
KNN 44.8% 47.9% 52.2% 45.5%

IL-1𝛽

NT

Oversampled
data 54

XGB 37.9% 39.4% 45.6% 37.6%
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Table I.32: LOOCV results for predicting IL-1𝛽 Pr LPS through classification. Best
results are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 24.14% 22.69% 22.54% 22.57%

Logistic
Lasso 17.24% 16.16% 16.43% 16.27%

Logistic
Ridge 34.48% 30.95% 31.43% 31.04%

Logistic
EN 31.03% 31.09% 30.63% 30.67%

DT 17.24% 16.89% 16.98% 16.91%
RF 27.59% 21.76% 23.89% 22.22%
SVC 20.69% 19.91% 20.32% 20.08%
KNN 31.03% 31.37% 33.17% 30.77%

Original
data 29

XGB 20.69% 14.33% 17.22% 14.92%
Logistic
Regression 31.0% 32.1% 34.0% 30.6%

Logistic
Lasso 31.0% 31.1% 34.0% 30.7%

Logistic
Ridge 37.9% 38.9% 40.2% 37.9%

Logistic
EN 31.0% 31.0% 34.0% 31.1%

DT 34.5% 34.4% 35.4% 34.6%
RF 44.8% 44.0% 45.4% 44.2%
SVC 31.0% 30.7% 34.6% 31.4%
KNN 27.6% 26.0% 30.4% 27.3%

IL-1𝛽

Pr LPS

Oversampled
data 36

XGB 31.0% 30.4% 35.2% 30.1%
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Table I.33: LOOCV results for predicting IL-1RA NT through classification. Best results
are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 42.31% 33.10% 32.64% 32.82%

Logistic
Lasso 57.69% 20.00% 31.25% 24.39%

Logistic
Ridge 57.69% 20.00% 31.25% 24.39%

Logistic
EN 61.54% 20.51% 33.33% 25.40%

DT 42.31% 36.39% 38.89% 36.85%
RF 53.85% 19.44% 29.17% 23.33%
SVC 53.85% 19.44% 29.17% 23.33%
KNN 53.85% 19.44% 29.17% 23.33%

Original
data 26

XGB 61.54% 20.51% 33.33% 25.40%
Logistic
Regression 38.5% 38.2% 40.3% 38.0%

Logistic
Lasso 34.6% 32.4% 35.4% 32.0%

Logistic
Ridge 30.8% 28.5% 29.9% 28.1%

Logistic
EN 30.8% 29.5% 29.9% 28.5%

DT 50.0% 48.7% 56.3% 49.5%
RF 53.8% 56.7% 65.3% 54.1%
SVC 34.6% 38.5% 38.9% 33.2%
KNN 34.6% 41.7% 38.9% 32.2%

IL-1RA

NT

Oversampled
data 48

XGB 38.5% 36.7% 37.5% 34.8%
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Table I.34: LOOCV results for predicting IL-1RA Pr LPS through classification. Best
results are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 46.15% 43.43% 43.43% 43.43%

Logistic
Lasso 38.46% 28.54% 32.32% 30.29%

Logistic
Ridge 42.31% 37.78% 37.88% 37.48%

Logistic
EN 23.08% 13.33% 18.18% 15.38%

DT 46.15% 46.19% 43.43% 43.21%
RF 30.77% 35.24% 28.11% 28.68%
SVC 26.92% 26.52% 25.08% 25.45%
KNN 15.38% 13.10% 13.47% 12.81%

Original
data 26

XGB 30.77% 26.79% 27.44% 26.59%
Logistic
Regression 50.0% 49.5% 50.3% 49.6%

Logistic
Lasso 42.3% 42.4% 43.6% 42.8%

Logistic
Ridge 42.3% 42.4% 43.6% 42.8%

Logistic
EN 42.3% 42.4% 43.6% 42.8%

DT 38.5% 38.3% 41.8% 39.5%
RF 42.3% 42.5% 44.8% 43.3%
SVC 50.0% 50.8% 52.2% 50.6%
KNN 30.8% 28.8% 36.4% 30.4%

IL-1RA

Pr LPS

Oversampled
data 33

XGB 46.2% 47.2% 49.2% 47.9%
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Table I.35: LOOCV results for predicting IL-1RA Pr Ca through classification. Best
results are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 30.77% 32.05% 27.62% 29.63%

Logistic
Lasso 46.15% 16.67% 28.57% 21.05%

Logistic
Ridge 53.85% 17.95% 33.33% 23.33%

Logistic
EN 46.15% 16.67% 28.57% 21.05%

DT 26.92% 17.50% 19.05% 18.24%
RF 46.15% 16.67% 28.57% 21.05%
SVC 34.62% 15.79% 21.43% 18.18%
KNN 30.77% 14.04% 19.05% 16.16%

Original
data 26

XGB 50.00% 17.33% 30.95% 22.22%
Logistic
Regression 30.8% 31.0% 43.3% 34.0%

Logistic
Lasso 30.8% 33.3% 41.0% 34.2%

Logistic
Ridge 30.8% 35.3% 41.0% 35.6%

Logistic
EN 30.8% 34.6% 38.6% 35.0%

DT 46.2% 48.0% 49.0% 46.0%
RF 38.5% 43.8% 52.9% 39.2%
SVC 50.0% 56.3% 55.7% 50.7%
KNN 30.8% 37.5% 41.4% 31.1%

IL-1RA

Pr Ca

Oversampled
data 42

XGB 30.8% 33.3% 41.0% 34.2%
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Table I.36: LOOCV results for predicting IL-1RA Ca LPS through classification. Best
results are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 21.43% 19.44% 21.67% 20.45%

Logistic
Lasso 14.29% 12.04% 13.33% 12.17%

Logistic
Ridge 21.43% 14.29% 20.00% 16.67%

Logistic
EN 14.29% 12.04% 13.33% 12.17%

DT 21.43% 17.78% 21.67% 19.53%
RF 0.00% 0.00% 0.00% 0.00%
SVC 50.00% 50.00% 51.67% 50.59%
KNN 35.71% 27.78% 38.33% 32.12%

Original
data 14

XGB 0.00% 0.00% 0.00% 0.00%
Logistic
Regression 28.6% 30.0% 30.0% 30.0%

Logistic
Lasso 7.1% 11.1% 8.3% 9.5%

Logistic
Ridge 21.4% 22.2% 21.7% 21.6%

Logistic
EN 0.0% 0.0% 0.0% 0.0%

DT 35.7% 33.3% 35.0% 33.9%
RF 7.1% 8.3% 8.3% 8.3%
SVC 57.1% 70.0% 60.0% 53.3%
KNN 35.7% 27.6% 38.3% 31.5%

IL-1RA

Ca LPS

Oversampled
data 15

XGB 7.1% 8.3% 8.3% 8.3%
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Table I.37: LOOCV results for predicting IL-1RA LPS LPS through classification. Best
results are highlighted in green.

Data
utilized

Sample
Size Model Accuracy Precision Recall F1 Score

Logistic
Regression 37.04% 33.89% 33.94% 33.86%

Logistic
Lasso 25.93% 17.08% 21.21% 18.69%

Logistic
Ridge 37.04% 26.71% 30.30% 28.38%

Logistic
EN 33.33% 23.08% 27.27% 25.00%

DT 44.44% 30.71% 36.36% 33.10%
RF 33.33% 25.24% 27.27% 26.03%
SVC 25.93% 18.89% 21.21% 19.78%
KNN 33.33% 21.19% 27.27% 22.46%

Original
data 27

XGB 33.33% 24.15% 27.27% 25.60%
Logistic
Regression 44.4% 42.6% 43.6% 42.8%

Logistic
Lasso 33.3% 33.2% 34.5% 33.8%

Logistic
Ridge 44.4% 44.7% 43.6% 43.9%

Logistic
EN 33.3% 34.3% 34.5% 34.2%

DT 25.9% 31.2% 28.5% 29.5%
RF 37.0% 37.5% 41.2% 38.8%
SVC 29.6% 29.3% 31.5% 29.6%
KNN 40.7% 40.7% 44.2% 41.7%

IL-1RA

LPS LPS

Oversampled
data 33

XGB 40.7% 40.7% 47.9% 42.4%

I.3 Predicting AD from IB - Extensive Results

Table I.38: LOOCV results for predicting AD from IB data.

Model Accuracy Precision Recall F1 score AUC Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Logistic
Regression 48.6% 45.3% 45.8% 44.9% 0.458 54.2% 65.0% 59.1%

Logistic Lasso 57.1% 55.4% 55.0% 54.8% 0.550 60.9% 70.0% 65.1%
Logistic Ridge 57.1% 54.6% 53.3% 51.4% 0.533 59.3% 80.0% 68.1%
Logistic EN 57.1% 55.0% 54.2% 53.3% 0.542 60.0% 75.0% 66.7%
DT 45.7% 42.8% 43.3% 42.7% 0.433 52.2% 60.0% 55.8%
RF 62.9% 61.9% 61.7% 61.7% 0.617 66.7% 70.0% 68.3%
SVC 48.6% 45.3% 45.8% 44.9% 0.458 54.2% 65.0% 59.1%
KNN 51.4% 49.1% 49.2% 48.8% 0.492 56.5% 65.0% 60.5%

Original
data

XGB 51.4% 50.8% 50.8% 50.8% 0.508 57.9% 55.0% 56.4%
Logistic
Regression 57.1% 58.3% 58.3% 57.1% 0.583 66.7% 50.0% 57.1%

Logistic Lasso 54.3% 56.0% 55.8% 54.2% 0.558 64.3% 45.0% 52.9%
Logistic Ridge 51.4% 52.5% 52.5% 51.4% 0.525 60.0% 45.0% 51.4%
Logistic EN 54.3% 54.9% 55.0% 54.2% 0.550 62.5% 50.0% 55.6%
DT 57.1% 57.4% 57.5% 57.0% 0.575 64.7% 55.0% 59.5%
RF 57.1% 57.4% 57.5% 57.0% 0.575 64.7% 55.0% 59.5%
SVC 45.7% 45.9% 45.8% 45.5% 0.458 52.9% 45.0% 48.6%
KNN 60.0% 60.7% 60.8% 60.0% 0.608 68.8% 55.0% 61.1%

Oversampled
data

XGB 57.1% 57.4% 57.5% 57.0% 0.575 64.7% 55.0% 59.5%
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I.4 Predicting AD from TI cytokines - Extensive Results

Table I.39: Test set results of mean filled models for predicting AD from TI data.

Model Accuracy Precision Recall F1 score AUC Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Training
Accuracy

Logistic
Regression 62.5% 63.3% 62.5% 61.9% 0.44 60.0% 75.0% 66.7% 100.0%

Logistic Lasso 75.0% 83.3% 75.0% 73.3% 0.69 66.7% 100.0% 80.0% 100.0%
Logistic Ridge 62.5% 63.3% 62.5% 61.9% 0.44 60.0% 75.0% 66.7% 100.0%
Logistic EN 75.0% 83.3% 75.0% 73.3% 0.81 66.7% 100.0% 80.0% 86.7%
DT 62.5% 63.3% 62.5% 61.9% 0.44 66.7% 50.0% 57.1% 96.7%
RF 75.0% 75.0% 75.0% 75.0% 0.59 75.0% 75.0% 75.0% 100.0%
SVC 75.0% 75.0% 75.0% 75.0% 0.75 75.0% 75.0% 75.0% 100.0%
KNN 50.0% 50.0% 50.0% 46.7% 0.50 50.0% 75.0% 60.0% 80.0%

Original
data

XGB 62.5% 63.3% 62.5% 61.9% 0.75 60.0% 75.0% 66.7% 100.0%
Logistic
Regression 62.5% 63.3% 62.5% 61.9% 0.44 60.0% 75.0% 66.7% 100.0%

Logistic Lasso 87.5% 90.0% 87.5% 87.3% 0.81 80.0% 100.0% 88.9% 87.5%
Logistic Ridge 62.5% 63.3% 62.5% 61.9% 0.63 60.0% 75.0% 66.7% 96.9%
Logistic EN 87.5% 90.0% 87.5% 87.3% 0.81 80.0% 100.0% 88.9% 87.5%
DT 62.5% 63.3% 62.5% 61.9% 0.63 66.7% 50.0% 57.1% 100.0%
RF 62.5% 63.3% 62.5% 61.9% 0.88 60.0% 75.0% 66.7% 100.0%
SVC 62.5% 63.3% 62.5% 61.9% 0.63 60.0% 75.0% 66.7% 87.5%
KNN 62.5% 78.6% 62.5% 56.4% 0.50 100.0% 25.0% 40.0% 81.3%

Oversampled
data

XGB 87.5% 90.0% 87.5% 87.3% 0.88 100.0% 75.0% 85.7% 100.0%

Table I.40: Test set results of median filled models for predicting AD from TI data.

Model Accuracy Precision Recall F1 score AUC Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Training
Accuracy

Logistic
Regression 62.5% 63.3% 62.5% 61.9% 0.50 60.0% 75.0% 66.7% 100.0%

Logistic Lasso 50.0% 50.0% 50.0% 50.0% 0.75 50.0% 50.0% 50.0% 93.3%
Logistic Ridge 62.5% 63.3% 62.5% 61.9% 0.44 60.0% 75.0% 66.7% 100.0%
Logistic EN 87.5% 90.0% 87.5% 87.3% 0.88 80.0% 100.0% 88.9% 83.3%
DT 37.5% 36.7% 37.5% 36.5% 0.31 40.0% 50.0% 44.4% 93.3%
RF 62.5% 63.3% 62.5% 61.9% 0.63 60.0% 75.0% 66.7% 100.0%
SVC 37.5% 36.7% 37.5% 36.5% 0.25 40.0% 50.0% 44.4% 100.0%
KNN 12.5% 10.0% 12.5% 11.1% 0.25 20.0% 25.0% 22.2% 100.0%

Original
data

XGB 75.0% 75.0% 75.0% 75.0% 0.69 75.0% 75.0% 75.0% 100.0%
Logistic
Regression 50.0% 50.0% 50.0% 50.0% 0.44 50.0% 50.0% 50.0% 100.0%

Logistic Lasso 50.0% 50.0% 50.0% 50.0% 0.63 50.0% 50.0% 50.0% 93.8%
Logistic Ridge 50.0% 50.0% 50.0% 50.0% 0.56 50.0% 50.0% 50.0% 93.8%
Logistic EN 75.0% 75.0% 75.0% 75.0% 0.88 75.0% 75.0% 75.0% 81.3%
DT 62.5% 63.3% 62.5% 61.9% 0.63 66.7% 50.0% 57.1% 100.0%
RF 75.0% 75.0% 75.0% 75.0% 0.63 75.0% 75.0% 75.0% 100.0%
SVC 50.0% 50.0% 50.0% 46.7% 0.63 50.0% 25.0% 33.3% 93.8%
KNN 50.0% 50.0% 50.0% 46.7% 0.50 50.0% 25.0% 33.3% 100.0%

Oversampled
data

XGB 75.0% 75.0% 75.0% 75.0% 0.81 75.0% 75.0% 75.0% 100.0%
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Table I.41: Test set results of mode filled models for predicting AD from TI data.

Model Accuracy Precision Recall F1 score AUC Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Training
Accuracy

Logistic
Regression 50.0% 50.0% 50.0% 46.7% 0.44 50.0% 25.0% 33.3% 100.0%

Logistic Lasso 62.5% 63.3% 62.5% 61.9% 0.50 66.7% 50.0% 57.1% 96.7%
Logistic Ridge 62.5% 63.3% 62.5% 61.9% 0.56 66.7% 50.0% 57.1% 96.7%
Logistic EN 62.5% 63.3% 62.5% 61.9% 0.56 66.7% 50.0% 57.1% 96.7%
DT 62.5% 78.6% 62.5% 56.4% 0.69 100.0% 25.0% 40.0% 83.3%
RF 75.0% 75.0% 75.0% 75.0% 0.69 75.0% 75.0% 75.0% 100.0%
SVC 50.0% 50.0% 50.0% 46.7% 0.56 50.0% 25.0% 33.3% 100.0%
KNN 50.0% 50.0% 50.0% 50.0% 0.75 50.0% 50.0% 50.0% 100.0%

Original
data

XGB 62.5% 63.3% 62.5% 61.9% 0.75 66.7% 50.0% 57.1% 96.7%
Logistic
Regression 50.0% 50.0% 50.0% 46.7% 0.44 50.0% 25.0% 33.3% 100.0%

Logistic Lasso 62.5% 63.3% 62.5% 61.9% 0.50 66.7% 50.0% 57.1% 96.9%
Logistic Ridge 62.5% 63.3% 62.5% 61.9% 0.56 66.7% 50.0% 57.1% 96.9%
Logistic EN 62.5% 63.3% 62.5% 61.9% 0.56 66.7% 50.0% 57.1% 96.9%
DT 62.5% 78.6% 62.5% 56.4% 0.69 100.0% 25.0% 40.0% 84.4%
RF 75.0% 75.0% 75.0% 75.0% 0.56 75.0% 75.0% 75.0% 100.0%
SVC 62.5% 63.3% 62.5% 61.9% 0.56 66.7% 50.0% 57.1% 96.9%
KNN 50.0% 50.0% 50.0% 50.0% 0.69 50.0% 50.0% 50.0% 100.0%

Oversampled
data

XGB 50.0% 50.0% 50.0% 46.7% 0.63 50.0% 25.0% 33.3% 100.0%

I.5 Predicting AD from IB and TI - Extensive Results

Table I.42: Test set results of mean filled models for predicting AD from IB and TI data.

Model Accuracy Precision Recall F1 score AUC Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Training
Accuracy

Logistic
Regression 50.0% 50.0% 50.0% 50.0% 0.44 50.0% 50.0% 50.0% 100.0%

Logistic Lasso 37.5% 36.7% 37.5% 36.5% 0.56 33.3% 25.0% 28.6% 100.0%
Logistic Ridge 50.0% 50.0% 50.0% 50.0% 0.38 50.0% 50.0% 50.0% 100.0%
Logistic EN 75.0% 83.3% 75.0% 73.3% 0.81 66.7% 100.0% 80.0% 90.0%
DT 87.5% 90.0% 87.5% 87.3% 0.88 80.0% 100.0% 88.9% 100.0%
RF 50.0% 50.0% 50.0% 50.0% 0.47 50.0% 50.0% 50.0% 100.0%
SVC 50.0% 50.0% 50.0% 50.0% 0.44 50.0% 50.0% 50.0% 100.0%
KNN 50.0% 50.0% 50.0% 46.7% 0.44 50.0% 25.0% 33.3% 100.0%

Original
data

XGB 50.0% 50.0% 50.0% 46.7% 0.69 50.0% 25.0% 33.3% 100.0%
Logistic
Regression 50.0% 50.0% 50.0% 50.0% 0.44 50.0% 50.0% 50.0% 100.0%

Logistic Lasso 37.5% 36.7% 37.5% 36.5% 0.50 33.3% 25.0% 28.6% 100.0%
Logistic Ridge 50.0% 50.0% 50.0% 50.0% 0.56 50.0% 50.0% 50.0% 100.0%
Logistic EN 62.5% 63.3% 62.5% 61.9% 0.69 66.7% 50.0% 57.1% 100.0%
DT 87.5% 90.0% 87.5% 87.3% 0.88 80.0% 100.0% 88.9% 100.0%
RF 50.0% 50.0% 50.0% 50.0% 0.69 50.0% 50.0% 50.0% 100.0%
SVC 50.0% 50.0% 50.0% 50.0% 0.44 50.0% 50.0% 50.0% 100.0%
KNN 50.0% 50.0% 50.0% 50.0% 0.56 50.0% 50.0% 50.0% 100.0%

Oversampled
data

XGB 62.5% 78.6% 62.5% 56.4% 0.75 100.0% 25.0% 40.0% 100.0%
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I .5 . PREDICTING AD FROM IB AND TI - EXTENSIVE RESULTS

Table I.43: Test set results of median filled models for predicting AD from IB and TI
data.

Model Accuracy Precision Recall F1 score AUC Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Training
Accuracy

Logistic
Regression 62.5% 63.3% 62.5% 61.9% 0.63 66.7% 50.0% 57.1% 100.0%

Logistic Lasso 62.5% 63.3% 62.5% 61.9% 0.63 66.7% 50.0% 57.1% 100.0%
Logistic Ridge 62.5% 63.3% 62.5% 61.9% 0.69 66.7% 50.0% 57.1% 96.7%
Logistic EN 75.0% 83.3% 75.0% 73.3% 0.88 100.0% 50.0% 66.7% 90.0%
DT 87.5% 90.0% 87.5% 87.3% 0.88 80.0% 100.0% 88.9% 100.0%
RF 75.0% 75.0% 75.0% 75.0% 0.66 75.0% 75.0% 75.0% 100.0%
SVC 50.0% 50.0% 50.0% 50.0% 0.69 50.0% 50.0% 50.0% 90.0%
KNN 62.5% 78.6% 62.5% 56.4% 0.56 100.0% 25.0% 40.0% 100.0%

Original
data

XGB 75.0% 83.3% 75.0% 73.3% 1.00 100.0% 50.0% 66.7% 100.0%
Logistic
Regression 62.5% 63.3% 62.5% 61.9% 0.63 66.7% 50.0% 57.1% 100.0%

Logistic Lasso 62.5% 63.3% 62.5% 61.9% 0.75 60.0% 75.0% 66.7% 90.6%
Logistic Ridge 62.5% 63.3% 62.5% 61.9% 0.63 66.7% 50.0% 57.1% 96.9%
Logistic EN 75.0% 83.3% 75.0% 73.3% 0.88 100.0% 50.0% 66.7% 90.6%
DT 87.5% 90.0% 87.5% 87.3% 0.81 80.0% 100.0% 88.9% 90.6%
RF 50.0% 50.0% 50.0% 46.7% 0.56 50.0% 25.0% 33.3% 100.0%
SVC 50.0% 50.0% 50.0% 50.0% 0.69 50.0% 50.0% 50.0% 90.6%
KNN 62.5% 63.3% 62.5% 61.9% 0.59 66.7% 50.0% 57.1% 87.5%

Oversampled
data

XGB 75.0% 83.3% 75.0% 73.3% 0.63 100.0% 50.0% 66.7% 100.0%

Table I.44: Test set results of mode filled models for predicting AD from IB and TI data.

Model Accuracy Precision Recall F1 score \gls{AUC} Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Training
Accuracy

Logistic
Regression 50.0% 50.0% 50.0% 46.7% 0.50 50.0% 25.0% 33.3% 100.0%

Logistic Lasso 62.5% 63.3% 62.5% 61.9% 0.56 66.7% 50.0% 57.1% 100.0%
Logistic Ridge 50.0% 50.0% 50.0% 50.0% 0.69 50.0% 50.0% 50.0% 83.3%
Logistic EN 62.5% 63.3% 62.5% 61.9% 0.56 66.7% 50.0% 57.1% 93.3%
DT 50.0% 50.0% 50.0% 50.0% 0.50 50.0% 50.0% 50.0% 100.0%
RF 62.5% 63.3% 62.5% 61.9% 0.69 66.7% 50.0% 57.1% 100.0%
SVC 62.5% 63.3% 62.5% 61.9% 0.56 66.7% 50.0% 57.1% 90.0%
KNN 62.5% 63.3% 62.5% 61.9% 0.75 66.7% 50.0% 57.1% 80.0%

Original
data

XGB 62.5% 63.3% 62.5% 61.9% 0.69 66.7% 50.0% 57.1% 100.0%
Logistic
Regression 50.0% 50.0% 50.0% 46.7% 0.50 50.0% 25.0% 33.3% 100.0%

Logistic Lasso 50.0% 50.0% 50.0% 46.7% 0.56 50.0% 25.0% 33.3% 100.0%
Logistic Ridge 50.0% 50.0% 50.0% 46.7% 0.50 50.0% 25.0% 33.3% 100.0%
Logistic EN 50.0% 50.0% 50.0% 46.7% 0.56 50.0% 25.0% 33.3% 93.8%
DT 37.5% 36.7% 37.5% 36.5% 0.50 33.3% 25.0% 28.6% 81.3%
RF 75.0% 83.3% 75.0% 73.3% 0.75 100.0% 50.0% 66.7% 100.0%
SVC 62.5% 63.3% 62.5% 61.9% 0.81 66.7% 50.0% 57.1% 100.0%
KNN 62.5% 78.6% 62.5% 56.4% 0.94 100.0% 25.0% 40.0% 100.0%

Oversampled
data

XGB 37.5% 21.4% 37.5% 27.3% 0.50 0.0% 0.0% 0.0% 100.0%
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ANNEX I. ANNEX 1

I.6 Predicting AD from Serum Cytokines - Extensive Results

Table I.45: Test set results of mean filled models for predicting AD from serum data.

Model Accuracy Precision Recall F1 score \gls{AUC} Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Training
Accuracy

Logistic
Regression 65.0% 65.2% 65.0% 64.9% 0.730 63.6% 70.0% 66.7% 69.6%

Logistic Lasso 65.0% 65.2% 65.0% 64.9% 0.710 63.6% 70.0% 66.7% 69.6%
Logistic Ridge 65.0% 65.2% 65.0% 64.9% 0.760 63.6% 70.0% 66.7% 68.4%
Logistic EN 65.0% 65.2% 65.0% 64.9% 0.710 63.6% 70.0% 66.7% 69.6%
DT 50.0% 50.0% 50.0% 49.5% 0.460 50.0% 40.0% 44.4% 88.6%
RF 60.0% 60.4% 60.0% 59.6% 0.570 62.5% 50.0% 55.6% 100.0%
SVC 75.0% 75.3% 75.0% 74.9% 0.740 72.7% 80.0% 76.2% 74.7%
KNN 75.0% 77.5% 75.0% 74.4% 0.795 85.7% 60.0% 70.6% 74.7%

Original
data

XGB 35.0% 34.8% 35.0% 34.8% 0.470 33.3% 30.0% 31.6% 100.0%
Logistic
Regression 75.0% 75.3% 75.0% 74.9% 0.790 72.7% 80.0% 76.2% 68.3%

Logistic Lasso 60.0% 60.4% 60.0% 59.6% 0.710 58.3% 70.0% 63.6% 69.5%
Logistic Ridge 65.0% 65.2% 65.0% 64.9% 0.770 63.6% 70.0% 66.7% 68.3%
Logistic EN 70.0% 70.8% 70.0% 69.7% 0.790 66.7% 80.0% 72.7% 67.1%
DT 55.0% 55.1% 55.0% 54.9% 0.590 55.6% 50.0% 52.6% 89.0%
RF 65.0% 66.5% 65.0% 64.2% 0.660 71.4% 50.0% 58.8% 100.0%
SVC 65.0% 65.2% 65.0% 64.9% 0.760 63.6% 70.0% 66.7% 87.8%
KNN 75.0% 77.5% 75.0% 74.4% 0.795 85.7% 60.0% 70.6% 76.8%

Oversampled
data

XGB 40.0% 40.0% 40.0% 40.0% 0.450 40.0% 40.0% 40.0% 98.8%

Table I.46: Test set results of median filled models for predicting AD from serum data.

Model Accuracy Precision Recall F1 score \gls{AUC} Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Training
Accuracy

Logistic
Regression 65.0% 65.2% 65.0% 64.9% 0.720 63.6% 70.0% 66.7% 64.6%

Logistic Lasso 65.0% 65.2% 65.0% 64.9% 0.740 63.6% 70.0% 66.7% 63.3%
Logistic Ridge 65.0% 65.2% 65.0% 64.9% 0.710 63.6% 70.0% 66.7% 64.6%
Logistic EN 70.0% 70.0% 70.0% 70.0% 0.750 70.0% 70.0% 70.0% 65.8%
DT 50.0% 50.0% 50.0% 47.9% 0.500 50.0% 30.0% 37.5% 97.5%
RF 60.0% 60.4% 60.0% 59.6% 0.630 62.5% 50.0% 55.6% 100.0%
SVC 70.0% 70.8% 70.0% 69.7% 0.770 66.7% 80.0% 72.7% 73.4%
KNN 75.0% 75.3% 75.0% 74.9% 0.855 77.8% 70.0% 73.7% 68.4%

Original
data

XGB 45.0% 44.5% 45.0% 43.7% 0.440 42.9% 30.0% 35.3% 100.0%
Logistic
Regression 65.0% 65.2% 65.0% 64.9% 0.720 63.6% 70.0% 66.7% 67.1%

Logistic Lasso 65.0% 65.2% 65.0% 64.9% 0.690 63.6% 70.0% 66.7% 69.5%
Logistic Ridge 70.0% 70.8% 70.0% 69.7% 0.820 66.7% 80.0% 72.7% 67.1%
Logistic EN 75.0% 75.3% 75.0% 74.9% 0.790 72.7% 80.0% 76.2% 67.1%
DT 60.0% 60.4% 60.0% 59.6% 0.600 62.5% 50.0% 55.6% 100.0%
RF 65.0% 65.2% 65.0% 64.9% 0.620 66.7% 60.0% 63.2% 98.8%
SVC 75.0% 77.5% 75.0% 74.4% 0.890 85.7% 60.0% 70.6% 97.6%
KNN 75.0% 83.3% 75.0% 73.3% 0.830 100.0% 50.0% 66.7% 74.4%

Oversampled
data

XGB 55.0% 55.5% 55.0% 54.0% 0.460 57.1% 40.0% 47.1% 100.0%

156



I .7 . PREDICTING AGE (OVER/UNDER 65) - EXTENSIVE RESULTS

Table I.47: Test set results of mode filled models for predicting AD from serum data.

Model Accuracy Precision Recall F1 score \gls{AUC} Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Training
Accuracy

Logistic
Regression 65.0% 66.5% 65.0% 64.2% 0.780 61.5% 80.0% 69.6% 63.3%

Logistic Lasso 65.0% 66.5% 65.0% 64.2% 0.670 61.5% 80.0% 69.6% 62.0%
Logistic Ridge 65.0% 66.5% 65.0% 64.2% 0.680 61.5% 80.0% 69.6% 62.0%
Logistic EN 65.0% 66.5% 65.0% 64.2% 0.680 61.5% 80.0% 69.6% 62.0%
DT 50.0% 50.0% 50.0% 45.1% 0.500 50.0% 20.0% 28.6% 100.0%
RF 65.0% 65.2% 65.0% 64.9% 0.680 66.7% 60.0% 63.2% 97.5%
SVC 80.0% 85.7% 80.0% 79.2% 0.860 100.0% 60.0% 75.0% 97.5%
KNN 60.0% 61.9% 60.0% 58.3% 0.765 66.7% 40.0% 50.0% 67.1%

Original
data

XGB 45.0% 44.5% 45.0% 43.7% 0.470 42.9% 30.0% 35.3% 100.0%
Logistic
Regression 60.0% 60.4% 60.0% 59.6% 0.700 58.3% 70.0% 63.6% 65.9%

Logistic Lasso 45.0% 44.9% 45.0% 44.9% 0.570 45.5% 50.0% 47.6% 59.8%
Logistic Ridge 60.0% 60.0% 60.0% 60.0% 0.710 60.0% 60.0% 60.0% 63.4%
Logistic EN 50.0% 50.0% 50.0% 49.5% 0.590 50.0% 60.0% 54.5% 63.4%
DT 60.0% 60.0% 60.0% 60.0% 0.670 60.0% 60.0% 60.0% 93.9%
RF 65.0% 65.2% 65.0% 64.9% 0.680 66.7% 60.0% 63.2% 96.3%
SVC 80.0% 85.7% 80.0% 79.2% 0.860 100.0% 60.0% 75.0% 97.6%
KNN 70.0% 81.3% 70.0% 67.0% 0.750 100.0% 40.0% 57.1% 70.7%

Oversampled
data

XGB 50.0% 50.0% 50.0% 50.0% 0.490 50.0% 50.0% 50.0% 100.0%

I.7 Predicting Age (Over/Under 65) - Extensive results

Table I.48: Test set results of mean filled models for predicting age group from TI data.

Model Accuracy Precision Recall F1 score \gls{AUC} Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Training
Accuracy

Logistic
Regression 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Logistic Lasso 87.5% 87.5% 90.0% 87.3% 100.0% 100.0% 80.0% 88.9% 100.0%
Logistic Ridge 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Logistic EN 87.5% 91.7% 83.3% 85.5% 93.3% 83.3% 100.0% 90.9% 93.3%
DT 62.5% 62.5% 63.3% 61.9% 63.3% 75.0% 60.0% 66.7% 100.0%
RF 50.0% 46.7% 46.7% 46.7% 63.3% 60.0% 60.0% 60.0% 100.0%
SVC 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
KNN 50.0% 46.7% 46.7% 46.7% 56.7% 60.0% 60.0% 60.0% 76.7%

Original
data

XGB 62.5% 62.5% 63.3% 61.9% 53.3% 75.0% 60.0% 66.7% 100.0%
Logistic
Regression 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Logistic Lasso 87.5% 87.5% 90.0% 87.3% 100.0% 100.0% 80.0% 88.9% 100.0%
Logistic Ridge 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Logistic EN 75.0% 80.0% 80.0% 75.0% 86.7% 100.0% 60.0% 75.0% 92.1%
DT 62.5% 62.5% 63.3% 61.9% 76.7% 75.0% 60.0% 66.7% 97.4%
RF 50.0% 46.7% 46.7% 46.7% 53.3% 60.0% 60.0% 60.0% 100.0%
SVC 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 97.4%
KNN 62.5% 62.5% 63.3% 61.9% 66.7% 75.0% 60.0% 66.7% 100.0%

Oversampled
data

XGB 62.5% 62.5% 63.3% 61.9% 50.0% 75.0% 60.0% 66.7% 100.0%
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ANNEX I. ANNEX 1

Table I.49: Test set results of median filled models for predicting age group from TI
data.

Model Accuracy Precision Recall F1 score \gls{AUC} Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Training
Accuracy

Logistic
Regression 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Logistic Lasso 87.5% 91.7% 83.3% 85.5% 100.0% 83.3% 100.0% 90.9% 100.0%
Logistic Ridge 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Logistic EN 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 93.3%
DT 37.5% 25.0% 30.0% 27.3% 40.0% 50.0% 60.0% 54.5% 90.0%
RF 50.0% 46.7% 46.7% 46.7% 60.0% 60.0% 60.0% 60.0% 100.0%
SVC 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
KNN 75.0% 85.7% 66.7% 66.7% 56.7% 71.4% 100.0% 83.3% 100.0%

Original
data

XGB 37.5% 25.0% 30.0% 27.3% 33.3% 50.0% 60.0% 54.5% 100.0%
Logistic
Regression 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Logistic Lasso 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 89.5%
Logistic Ridge 75.0% 80.0% 80.0% 75.0% 100.0% 100.0% 60.0% 75.0% 86.8%
Logistic EN 87.5% 87.5% 90.0% 87.3% 100.0% 100.0% 80.0% 88.9% 89.5%
DT 50.0% 46.7% 46.7% 46.7% 46.7% 60.0% 60.0% 60.0% 100.0%
RF 50.0% 46.7% 46.7% 46.7% 53.3% 60.0% 60.0% 60.0% 94.7%
SVC 50.0% 46.7% 46.7% 46.7% 60.0% 60.0% 60.0% 60.0% 94.7%
KNN 87.5% 91.7% 83.3% 85.5% 80.0% 83.3% 100.0% 90.9% 100.0%

Oversampled
data

XGB 37.5% 25.0% 30.0% 27.3% 46.7% 50.0% 60.0% 54.5% 100.0%

Table I.50: Test set results of mode filled models for predicting age group from TI data.

Model Accuracy Precision Recall F1 score \gls{AUC} Precision
(Class AD)

Recall
(Class AD)

F1 score
(Class AD)

Training
Accuracy

Logistic
Regression 62.5% 75.0% 70.0% 61.9% 93.3% 100.0% 40.0% 57.1% 100.0%

Logistic Lasso 87.5% 87.5% 90.0% 87.3% 93.3% 100.0% 80.0% 88.9% 100.0%
Logistic Ridge 62.5% 31.3% 50.0% 38.5% 13.3% 62.5% 100.0% 76.9% 63.3%
Logistic EN 87.5% 91.7% 83.3% 85.5% 100.0% 83.3% 100.0% 90.9% 86.7%
DT 37.5% 25.0% 30.0% 27.3% 40.0% 50.0% 60.0% 54.5% 93.3%
RF 37.5% 25.0% 30.0% 27.3% 53.3% 50.0% 60.0% 54.5% 100.0%
SVC 62.5% 31.3% 50.0% 38.5% 80.0% 62.5% 100.0% 76.9% 100.0%
KNN 62.5% 31.3% 50.0% 38.5% 66.7% 62.5% 100.0% 76.9% 100.0%

Original
data

XGB 50.0% 46.7% 46.7% 46.7% 56.7% 60.0% 60.0% 60.0% 90.0%
Logistic
Regression 62.5% 75.0% 70.0% 61.9% 93.3% 100.0% 40.0% 57.1% 100.0%

Logistic Lasso 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 92.1%
Logistic Ridge 50.0% 46.7% 46.7% 46.7% 46.7% 60.0% 60.0% 60.0% 78.9%
Logistic EN 50.0% 46.7% 46.7% 46.7% 46.7% 60.0% 60.0% 60.0% 81.6%
DT 50.0% 46.7% 46.7% 46.7% 50.0% 60.0% 60.0% 60.0% 92.1%
RF 37.5% 25.0% 30.0% 27.3% 46.7% 50.0% 60.0% 54.5% 100.0%
SVC 62.5% 31.3% 50.0% 38.5% 60.0% 62.5% 100.0% 76.9% 100.0%
KNN 62.5% 58.3% 56.7% 56.4% 66.7% 66.7% 80.0% 72.7% 100.0%

Oversampled
data

XGB 50.0% 46.7% 46.7% 46.7% 50.0% 60.0% 60.0% 60.0% 92.1%
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