Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/182181
Título: Direct Reduction of Bias of the Classical Hill Estimator
Autor: Caeiro, Frederico Almeida Gião Gonçalves
Gomes, M. Ivette
Pestana, Dinis
Palavras-chave: bias estimation
semi-parametric estimation
heavy tails
statistics of extremes
statistics of Extremes
semi-parametric estimation
bias estimation
heavy tails
Data: Nov-2005
Citação: Caeiro, F. A. G. G., Gomes, M. I., & Pestana, D. (2005). Direct Reduction of Bias of the Classical Hill Estimator. REVSTAT: Statistical Journal, 3(2), 113-136. https://doi.org/10.57805/revstat.v3i2.21
Resumo: In this paper we are interested in an adequate estimation of the dominant component of the bias of Hill’s estimator of a positive tail index γ, in order to remove it from the classical Hill estimator in different asymptotically equivalent ways. If the second order parameters in the bias are computed at an adequate level k1 of a larger order than that of the level k at which the Hill estimator is computed, there may be no change in the asymptotic variances of these reduced bias tail index estimators, which are kept equal to the asymptotic variance of the Hill estimator, i.e., equal to γ 2 . The asymptotic distributional properties of the proposed estimators of γ are derived and the estimators are compared not only asymptotically, but also for finite samples through Monte Carlo techniques.
Peer review: yes
URI: http://hdl.handle.net/10362/182181
DOI: https://doi.org/10.57805/revstat.v3i2.21
ISSN: 1645-6726
Aparece nas colecções:FCT: DM - Artigos em revista internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2005_Direct_Reduction.pdf1,08 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.