Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/180808
Registo completo
Campo DCValorIdioma
dc.contributor.advisorCasteleyn, Sven-
dc.contributor.advisorPainho, Marco Octávio Trindade-
dc.contributor.advisorSchwering, Angela-
dc.contributor.authorRodrigues, Rebeca Nunes-
dc.date.accessioned2025-03-18T09:52:15Z-
dc.date.available2025-03-18T09:52:15Z-
dc.date.issued2025-03-03-
dc.identifier.urihttp://hdl.handle.net/10362/180808-
dc.descriptionDissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologiespt_PT
dc.description.abstractThe rapid growth of the Earth Observation (EO) sector due to advances in technologies such as big data and artificial intelligence increases the demand for skilled workers and, consequently, for tools to support the training of future professionals. Among the services provided by the EO sector, land use and land cover analysis contributes to important decision-making. In this context, “GeoAI Machinist” is a serious educational game in the field of geospatial artificial intelligence that was designed and implemented using a pre-trained land cover and land use classifier. It covers topics relevant to students from higher education in geospatial technologies. As a result, “GeoAI Machinist” serves as a supplemental learning activity, utilizing the educational benefits of serious games as well as the availability of online distribution. The benefits have been assessed in a one-group pretest-posttest design experiment that demonstrated improvements in knowledge and perception of knowledge, as well as positive perceived learning.pt_PT
dc.language.isoengpt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectGeoAIpt_PT
dc.subjectgeospatial artificial intelligencept_PT
dc.subjectserious gamept_PT
dc.subjecteducational gamept_PT
dc.subjectLULCpt_PT
dc.subjectperceived learningpt_PT
dc.subjectusabilitypt_PT
dc.subjectonline learningpt_PT
dc.title“GEOAI Machinist”: A Serious Game to Teach the Application of Convolutional Neural Networks to Land Use and Land Cover Classificationpt_PT
dc.typemasterThesispt_PT
thesis.degree.nameMestrado em Tecnologias Geoespaciaispt_PT
dc.identifier.tid203923804-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopt_PT
Aparece nas colecções:NIMS - MSc Dissertations Geospatial Technologies (Erasmus-Mundus)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
TGEO298_G.pdf10,52 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.