Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/180554
Registo completo
Campo DCValorIdioma
dc.contributor.advisorPainho, Marco Octávio Trindade-
dc.contributor.advisorRibeiro, Sara Cristina da Silva-
dc.contributor.advisorBañón, Filiberto Pla-
dc.contributor.authorAndrade, Sebastian Suarez-
dc.date.accessioned2025-03-13T13:02:35Z-
dc.date.available2025-03-13T13:02:35Z-
dc.date.issued2025-02-28-
dc.identifier.urihttp://hdl.handle.net/10362/180554-
dc.descriptionDissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologiespt_PT
dc.description.abstractThe exploration and potential colonization of Mars have long fascinated scientists and the public, driven by the goal of extending human presence beyond Earth. However, Mars’ harsh environment—thin atmosphere, extreme temperatures, high radiation, and lack of breathable oxygen—poses significant challenges. To establish a sustainable human presence, robotic colonies must serve as precursors, conducting scientific research, resource extraction, infrastructure development, and environmental monitoring to prepare viable locations for future missions. This study integrates geospatial technologies and Multi-Criteria Decision Analysis (MCDA) to identify optimal regions for robotic colonies and future human settlement, using the Analytic Hierarchy Process (AHP) combined with engineering constraints from the Perseverance (Mars 2020) mission. Engineering constraints—slope, elevation, latitude, surface reflectivity, and load-bearing properties—delineated non-viable areas, while factors including surface temperature, water-equivalent hydrogen, elevation, and terrain stability, determined suitable locations for human habitability. The integrated suitability map highlights certain regions at the four-region intersection between Oxia Palus–Margaritifer–Arabia–Sinus Sabaeus (area ≈ 600’000 km²), Memnonia (area 30’000 km2 ) and Aeolis (area ≈160’000 km²) as the most promising sites, with the first one emerging as the preferred option due to its larger contiguous terrain, reducing landing uncertainties and enhancing mission flexibility. This study provides a systematic and scalable framework for selecting robotic colony sites while ensuring safe and sustainable operations, ultimately supporting long-term human exploration. Beyond planetary exploration, these findings contribute to humanity’s pursuit of interplanetary expansion—securing survival, advancing scientific frontiers, and positioning Mars as a gateway for deep-space exploration.pt_PT
dc.language.isoengpt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAnalytic Hierarchy Processpt_PT
dc.subjectGeospatial Technologiespt_PT
dc.subjectMars Colonizationpt_PT
dc.subjectMulti-Criteria Decision Analysispt_PT
dc.subjectGeospatial Suitability Analysispt_PT
dc.subjectSDG 9 - Industry, innovation and infrastructurept_PT
dc.subjectSDG 11 - Sustainable cities and communitiespt_PT
dc.subjectSDG 13 - Climate actionpt_PT
dc.subjectSDG 17 - Partnerships for the goalspt_PT
dc.titleSpatial Suitability Analysis of Mars for Robotic Colonization and Future Human Settlementpt_PT
dc.typemasterThesispt_PT
thesis.degree.nameMestrado em Tecnologias Geoespaciaispt_PT
dc.identifier.tid203923987-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopt_PT
Aparece nas colecções:NIMS - MSc Dissertations Geospatial Technologies (Erasmus-Mundus)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
TGEO4801.pdf10,45 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.