Utilize este identificador para referenciar este registo: http://hdl.handle.net/10362/179846
Título: Machine learning in Esg investing: predictive analysis for stock performance
Autor: Lidén, Joel Benjamin
Orientador: Hirschey, Nicholas H.
Palavras-chave: Machine learning
Esg
Equities
Nordic market
Gradient boosting tree
Sustainable finance
Data de Defesa: 26-Jan-2024
Resumo: This strategy explores the use of ESG metrics within machine learning frameworks, particularly Gradient Boosting Trees and SHAP-value analysis, to predict stock performance in the Nordic Markets. Focusing on data from 2007-2022, it examines the efficiency of ESG metrics in forecasting Active Return. Utilizing the model, it reveals that long portfolios, especially those informed by SHAP analysis, consistently outperform the OMX Nordic Large cap Index, while short portfolios show underperformance. The study highlights the potential of machine learning in enhancing ESG-focused investment strategies, suggesting the need for broader datasets and diverse market analysis for more robust and comprehensive investment insights.
URI: http://hdl.handle.net/10362/179846
Designação: A Work Project, presented as part of the requirements for the Award of a Master’s degree in Finance from the Nova School of Business and Economics
Aparece nas colecções:NSBE: Nova SBE - MA Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
WP_FILE_Joel_Lid_n_54345.pdf1,75 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.