Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10362/175915Registo completo
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.author | Rasteiro, Diogo | - |
| dc.date.accessioned | 2024-11-27T22:19:09Z | - |
| dc.date.available | 2024-11-27T22:19:09Z | - |
| dc.date.issued | 2024-09-27 | - |
| dc.identifier.other | PURE: 103888322 | - |
| dc.identifier.other | PURE UUID: c841fd67-b707-4293-b482-d24698bb4a7c | - |
| dc.identifier.uri | http://hdl.handle.net/10362/175915 | - |
| dc.description | Rasteiro, D. (2024). Exploring Geometric Semantic Genetic Programming for the evolution of Classifiers [poster]. 1. Poster session presented at Data Research Meetup by MagIC, Lisbon, Portugal. --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 (DOI: 10.54499/UIDB/04152/2020) - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS). | - |
| dc.description.abstract | Genetic Programming (GP) is the concept of building and evolving computer programs according to the Darwin's Theory of Evolution. Many different algorithms fall under its umbrella, and this document takes particular interest in one called Geometric Semantic Genetic Programming (GSGP). This specific variation uses an approach focused on the semantics of the evolved computer programs and utilizes genetic operators with specific properties that allow them to induce a uni-modal fitness landscape on any type of problem. The results displayed by this technique are excellent, particular within the realm of solving regression problems. The aim of this work is to explore the potential of GSGP techniques, particularly in the realm of classification problems and aims to develop implementations specifically designed for multi-class problems. | en |
| dc.format.extent | 1 | - |
| dc.language.iso | eng | - |
| dc.relation | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04152%2F2020/PT | - |
| dc.relation | https://doi.org/10.54499/UIDB/04152/2020 | - |
| dc.rights | restrictedAccess | - |
| dc.title | Exploring Geometric Semantic Genetic Programming for the evolution of Classifiers [poster] | - |
| dc.type | conferenceObject | - |
| degois.publication.firstPage | - | |
| degois.publication.issue | 1 | - |
| degois.publication.lastPage | - | |
| degois.publication.title | Data Research Meetup by MagIC | - |
| dc.peerreviewed | no | - |
| dc.description.version | publishersversion | - |
| dc.description.version | unpublished | - |
| dc.contributor.institution | NOVA Information Management School (NOVA IMS) | - |
| Aparece nas colecções: | NIMS: MagIC - Documentos de conferências nacionais | |
Ficheiros deste registo:
| Ficheiro | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Exploring_Geometric_Semantic_Genetic_Programming_for_the_evolution_of_Classifiers_poster_.pdf | 261,18 kB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.











